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ABSTRACT

In this paper, we presented a neural network system for DCASE
2018 task 2, general purpose audio tagging. We fine-tuned the
Google AudioSet feature generation model with different settings
for the given 41 classes on top of a fully connected layer with 100
units. Then we used the fine-tuned models to generate 128 dimen-
sional features for each 0.960s audio. We tried different neural net-
work structures including LSTM and multi-level attention models.
In our experiments, the multi-level attention model has shown its
superiority over others. Truncating the silence parts, repeating and
splitting the audio into the fixed length, pitch shifting augmentation,
and mixup techniques have all improved the results with a reason-
able amount. The proposed system achieved a result with MAP@3
score at 0.936, which outperforms the baseline result of 0.704 and
achieves top 7% in the public leaderboard.

Index Terms— audio tagging, AudioSet, multi-level attention
model

1. INTRODUCTION

Sound contains various information that could indicate the sound
sources, surrounding environment, music genres, possible dangers
or even the emotions of the speakers. Thus sound plays a crucial
part in our daily communication and interaction with the world.
Teaching machines to listen, such as recognizing the sound events,
would benefit humans in many ways. Relevant applications include
public surveillance, sound print, auditory medical information mon-
itoring and multimedia content analysis.

General purpose audio tagging is a task that infers descriptive
labeling from these sounds such as musical instruments, domes-
tic animals, and human activities. Recognizing and labelling these
sound events with appropriate tags can provide a powerful tool to
categorize the extensively large amount of audio data from the in-
ternet. With the labels, the content providers can give better ser-
vices such as providing audio descriptions for visually or hearing
impaired people, and providing powerful searching tools for the
people working in the entertainment industries.

The traditional methods for doing the audio classification and
audio tagging are adapted from speech recognition such as the Mel-
frequency cepstral coefficients(MFCC) features and simple Gaus-
sian mixture model(GMM) classifiers[1]. Recently, deep neural

This work was supported by the Kone foundation, and the European
Union’s Horizon 2020 research and innovation programme via the project
MeMAD (GA780069). Computational resources were provided by the
Aalto Science-IT project.

networks have proven its great usefulness in feature engineering,
classification, detection, and audio synthesis. Almost all the sub-
missions in DCASE 2017[2] used some forms of neural networks
such as long short-term memory units(LSTM) and convolutional
neural networks(CNN). Thus deep learning is our main research
approach for this task. Google has created an dataset called Au-
dioSet with a structured hierarchical ontology[3], which provides
the proper way to annotate the sounds. Instead of releasing the orig-
inal audio files, each sample from the AudioSet is represented by 10
instances of 128 dimensional features. Google also provides a pre-
trained model to generate the 128 features for 0.960 seconds audio.
Kong proposed a single-level attention model on this dataset, which
outperformed the Google’ baseline[4]. Later, Yu proposed a multi-
level attention model as an extension to previous single-level atten-
tion models, the results outperformed both the single-level attention
model and the baseline.

Thus we came up with the idea to fine-tune the feature gener-
ation model first for the 41 classes of this DCASE task, and then
try the multi-level attention model on the generated compact fea-
tures. We aimed at proving the usability of these compact features
and the superiority of multi-level attention model. We also incorpo-
rated pitch shifting augmentation and mixup techniques, which all
improved the score with a reasonable amount.

The structure of this paper is as follows. Section 2 describes
methods on how to fine-tune the existing CNN model for the given
41 classes. Section 3 describes the design of our proposed system.
The experimental results and conclusions can be seen in section 4
and 5 respectively.

2. FINE-TUNED VGGISH MODEL

2.1. Structure

VGGNet[5] with deep Convolutional Neural Networks(CNN)
structures has worked greatly well in image classification. Since
the spectral representation of an audio signal can be used directly as
an image, this deep CNN structure is also a promising techniques
in many machine listening tasks, such as audio tagging, audio event
detection and acoustics scene classification. VGGish model[6] is a
variant of the VGG model with minor modifications. Table 1 shows
the detailed structure of the modified version. Google trained this
model on the YouTube-100M dataset with total 100 million videos.
The training set contains 70 million videos and they were further
split into non-overlapping 960 ms audio frames. Log-mel spectro-
grams were then computed as 96×64 images for the input of the
VGGish model. The evaluation results of VGGish model showed
its great usability in the audio domain.
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Table 1: VGGish model structure. The kernel size for CNN is (3,
3) and the kernel size for pooling is (2, 2). The activation function
is ’relu’ for all the layers.

layers filters@size layers filters@size
1. input 1@96×64 9. conv 512@12×8
2. conv 64@96×64 10. conv 512@12×8
3. pooling 64@48×32 11. pooling 512@6×4
4. conv 128@48×32 12. flatten 12288
5. pooling 128@24×16 13. fc 4096
6. conv 256@24×16 14. fc 4096
7. conv 256@24×16 15. fc 128
8. pooling 256@12×8 16. ... ...

The pre-trained VGGish model can act as a feature extractor.
The provided 128 embedding features for 0.960 seconds are very
compact, high level and semantically meaningful as well. These
compact features can then be fed into a shallower model for classi-
fication. VGGish model can also become part of a larger model
where more layers are added upon the model, which makes it
possible to adapt and fine-tune this model for different datasets.
possible[6].

2.2. Balanced and Unbalanced Fine-tuning

The original VGGish model is trained for a multi-label classification
task with the Google AudioSet ontology[3], which has 632 classes
in a hierarchy tree structure. This challenge is a multi-class classi-
fication task, which means there is only one correct label for a sam-
ple. The 41 classes for this task all belongs to the AudioSet ontol-
ogy. The training data is provided by FreeSound Dataset(FSD)[7].
The dataset has in total 9473 training files with the smallest class
having only 94 training samples and the biggest class having 300
training samples. The average length of the audio files is 6.7 sec-
onds. We added one hidden layer with 100 units after the VGGish
model, and the final classification layer has 41 units with softmax
activations.

To fine-tune the VGGish model, we must divide the data into a
training part and a validation part. The validation loss is then used
as the stopping criterion in case of overfitting. Firstly, we used the
first 8000 audio files as training data and the remaining 1473 audio
files as validation data. To fully use the data, we then used the last
8000 audio files as training data and the first 1473 audio files as
validation data. Thus for one setting we would get two models, one
of which is fine-tuned on the first 8000 audio files and the other is
fine-tuned on the last 8000 audio files.

Mini-batch balancing is a technique which assigns equal num-
ber of training samples for each class in each mini-batch. It has been
proven useful on AudioSet to deal with the unbalanced dataset[4].
For the balanced fine-tuning, we followed the mini-batch balanc-
ing method by choosing an audio sample from each class for ev-
ery training batch. However, it is not perfect balancing since audio
samples may contain different number of 0.960 seconds length seg-
ments. In total, there would be 41 audio files, around 280 log-mel
spectrograms, for each training batch. On the other hand, we also
fine-tuned a unbalanced model by randomly choose 41 audio files
in each batch for comparison. So we got 4 models in total.

The fine-tuned model are used as the feature extractors for the
audio. Each audio file is firstly split into several non-overlapping
0.960 seconds segments. And for each segment, the log-mel spec-

trogram with dimension 96× 64 is computed, then the spectrogram
is fed into the fine-tuned model to get the 128 dimensional features.

3. THE PROPOSED SYSTEM

3.1. Preprocessing

The provided audio files are provided as PCM 16 bits, 44.1 kHz,
mono format. However, the original quality might be quite dif-
ferent since they are uploaded by users all around the world. For
preprocessing, we trimmed the silence parts only in the beginning
and the end to avoid the influence of these irrelevant silence parts.
We used the librosa1 toolbox for the trimming here. The normal-
izing and pitch shifting mentioned in the following section are also
implemented using this toolbox. The silence parts that are in the
middle might contain important dynamic information for classifi-
cation. We then normalized the amplitude of the audio files to [-1,
1]. The trimmed and normalized audio files are then split into non-
overlapping 0.960 seconds segments. For each segment the log-mel
spectrogram with size 96× 64 is computed with 25ms window size
and 10ms hop size. The 96 represent the frame size and 64 repre-
sents the number of frequency bands. The spectrograms are then
fed into the fine-tuned VGGish model for features extraction.

3.2. Data Augmentation

The data is unbalanced where only around half of the classes have
300 audios. The imbalance problem could make the model empha-
size more on the classes with more training samples and neglect to
learn from the classes with less samples. To deal with this problem,
we used the pitch shifting, repeat and split strategies for augmenta-
tion.

Pitch shifting is similar to the affine transformation for the im-
ages. This affine transformation is a great method for the data aug-
mentation of the computer vision task. In the spectrogram domain,
pitch shifting means to moves the spectrogram up or down a little
bit so that the model do not remember the image but learn the char-
acteristics from them. For actual implementations, we randomly
choose a integer number between (-12, 12) for each audio file, and
then shift the correspond number of semitones to create the new file.

Some of our models used fixed length audio as input. However,
the audio files have variable length. To fully use the full length of
the audio, we split them into several fixed length audios as input,
which also gave us more training data. For the audio files that are
shorter, we repeat them and concatenate them together to the fixed
length.

3.3. Mixup

Mixup means training the neural networks using the convex combi-
nations from pairs of examples and their labels. It helps the neural
network to emphasize the linear combination between the training
samples, which can improve the generalization ability, reduce mem-
orization of the corrupted labels, increase the robustness to adver-
sarial examples[8]. The training data provided by the organizer has
another label representing if the audio is manually verified. Thus
trying this method can help reduce the effect of the potential cor-
rupted or misclassified audio in the unverified audios. Besides, this
will also allow the model learn to distinguish between classes. The
following equation[8] explains how the algorithms works:

1https://github.com/librosa/librosa
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Figure 1: Attention model for Audio Set[4]

x̃ = λxi + (1− λ)xj
ỹ = λyi + (1− λ)yj
λ ∼ Beta(α, α)
α ∈ (0,∞)

(1)

The (xi, yi)and(xj , yj) are two training and label pairs, which are
randomly sampled form the training data. λ is drawn from a Beta
distribution and lies in the region [0,1]. The experiments in the
work[8] shows that increasing the α would increase the training
error on real data and minimize the generalization gap. They also
found that α ∈ [0.1, 0.4] would give a improved performance and
lagre α will leads to underfitting.

3.4. Multi-level Attention Model

The dynamic changes are crucial in audio tagging challenges. Only
considering the frequency structure might be useful for the recogni-
tion of the melodic instruments, but for the tags such as ’gunshort’,
and ’knock’, the temporal changes are much more important. An
attention model, which assign different weights for the instances
in a time series, is a good strategy for considering the dynamics
of sound. An attention model structure[4] presented for the Au-
dioSet can be seen in Fig. 1. Bn represents an audio file with
10 instances x1 ∼ x10, fk(xn) represents the classification results
for class K. The weights for each instance are firstly computed as
vk(x1) ∼ vk(x10) and then normalized to pnk(x1) ∼ pnk(x10)
so that

∑10
i pnnk(xi) = 1. Finally, multiplying the weights with

the relevant prediction results and summing them together gives the
final prediction for class K.

Combining the features from different level and different time-
scale can provide more accurate descriptions. A CNN-based
architecture[9] has shown great performance for music tagging by
aggregating the multi-level and multi-scale features. Concatenated
features extracted from different level of CNN has also been proven
useful in computer vision tasks[10]. Inspired by the works[4][11]
on Google Audio Set, we decided to choose a similar multi-level
attention structure for audio. We did not try multi-scale methods
because the fine-tuned VGGish models can only generate features
for the 0.960 seconds fixed length audio. We prepared each training
sample as 6 concatenated segments, each segment contains 0.960
seconds audio. Then the 6 × 128 dimensional features extracted
using the fine-tuned VGGish model are fed into the neural network
for training.

Figure 2: Model Structure for Multi-level Attention model

Fig. 2 shows the model structure. Each of the 6 instances are
fed into a fully connected neural networks with 3 layers. Different
color boxes represent the different level features, and the features
from the same level are then fed into an attention model, shown in
Fig. 1, to get the predictions. We then concatenated all three pre-
dictions from different levels and forward them into the final classi-
fication layer with the softmax activation to get the 41 probabilities
for the 41 classes.

3.5. Evaluation Metric

The evaluation uses the Mean Average Precision @ 3 (MAP@3)2.
The detailed implementation and explanation can be seen in the link
provided in the footnote. Simply speaking, up to three predictions

2https://github.com/benhamner/Metrics/blob/
master/Python/ml_metrics/average_precision.py
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Table 2: The one second DNN evaluation results on different fine-
tuned VGGish models

Feature Extractor MAP@3
Baseline 0.704
Original VGGish 0.606
Balanced First Part 0.870
Balanced Last Part 0.864
Balanced All 0.891
Unbalanced First Part 0.858
Unbalanced Last Part 0.872
Unbalanced All 0.892
Ensemble All 0.903

Table 3: Evaluation results on different model structures and hyper-
parameters.

Index Model Structure MAP@3
A 1-Segment Multi-level 0.903
B LSTM 0.914
C 6-Segment Multi-level Attention 0.925
D C + Pitch shifting Augmentation 0.930
E D + Mixup(α = 0.1) 0.930
F D + Mixup(α = 0.2) 0.936
G D + Mixup(α = 0.4) 0.931
H D + Mixup(α = 1.0) 0.930

can be given even though there is only one correct label. The order
of the predictions matters in this setting. If the correct label is pre-
dicted in the 1st position among those three predictions, the system
would get a score 1. 2nd position would get a score 1/2, 3rd posi-
tion would get a score 1/3. If there is no correct answer in the three
predictions, the score would be zero. The average of the scores for
all the testing samples would be the final evaluation score.

4. EXPERIMENTS

4.1. Different fine-tuned VGGish models

Firstly, we tested the performance of different fine-tuned VGGish
models on a simpler model structure. In this experiment, we built a
simple 3-layer fully connected neural networks with each layer con-
taining 600 units. The classification results from each layer are con-
catenated together as input to the final layer. The activation func-
tion is ’relu’ for all the layers, except that the classification layers
use ’softmax’ activation function. Batch normalization and dropout
with ratio 0.4 are used after each middle layer. The input is the
128 dimensional features for 0.960 seconds. For evaluation on files
with different length, we took the average results as the score. As
can be seen from Table 2, all of the fine-tuned models outperform
the original VGGish model. There is no clear difference between
the balanced and unbalanced fine-tuning strategy. However, using
geometric mean results of all 4 models will give the best results.

4.2. Different neural network structures and hyper parameters

Section 4.1 has shown that utilizing the results from all 4 fine-tuned
models would give the best results. Thus for each model structure
in this section, we also used the same strategy. The results for dif-
ferent model structures and different random mix factors α can be

Table 4: Evaluation results on different number of segments multi-
level attention models

Number of Segments 1 2 4 6
MAP@3 0.917 0.919 0.931 0.936

Number of Segments 8 10 Ensemble All
MAP@3 0.929 0.931 0.931

seen in Table 3. Model A has the same setting as the best results
from Table 2. Model B uses one LSTM layer with 600 hidden units
upon the original variable length input. Model C has the same 6-
segment multi-level attention structures shown in Section 3.4, other
parameter are same as A. Model D is based on model C with pitch
shifting augmentation. Model E, F, G, H are based on D with dif-
ferent mixup factors.

From the comparison between model A, B, C, LSTM is better
than the 1-segment multi-level model. The 6-segment multi-level
attention model performs the best. Thus temporal information plays
an important role in recognition, and multi-level attention model
has better ability to model the temporal information than LSTM in
our settings. Using the pitch shifting augmentation to generate a
relevantly more balanced training data also improves the results a
little bit. The comparison between model E, F, G, H shows mixup
with the α = 0.2 has the best performance among these 4 choices.

4.3. Different number of segments

We also tried the multi-level attention model with different num-
ber of segments as input. Other training settings, such as the pitch
shifting augmentation and mixup, are the same as the best results in
Table 3. Results can be seen in Table 4. For the ensemble results,
we took the geometric mean of all the results. We can see that the 6-
segment model has the best performance and the ensemble does not
improve the overall score. The reason might be that these models
are not diverse enough.

5. CONCLUSIONS

In this paper, we tried different fine-tuning methods on the AudioSet
VGGish model for generating 128 features for 0.960s audio. The
results show that the combination of the 4 models trained with dif-
ferent train-validation splitting and balanced/unbalanced techniques
would give the best results. We also implemented different neural
network structures for comparison and found that multi-level atten-
tion model performs the best among all. This shows the importance
of modeling the temporal information. The 6-segment multi-level
attention model has the best MAP@3 at 0.936. The pitch shifting
augmentation and mixup method with α = 0.2 also helped im-
prove the performance. Further research might include more thor-
ough fine-tuning, building own CNN model for feature generation,
utilizing multi-scale features along with multi-level features for the
attention model.
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