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ABSTRACT

This technical report outlines our solution to Task 5 of the DCASE
2019 challenge, titled Urban Sound Tagging. The objective of the
task is to label different sources of noise from raw audio data.
A modified form of MobileNetv2, a convolutional neural network
(CNN) model was trained to label both coarse and fine tags jointly.
The proposed model uses log-scaled Mel-spectrogram as the repre-
sentation format for the audio data. Mixup, Random erasing, scal-
ing, and shifting are used as data augmentation techniques. A sec-
ond model that uses scaled labels was built to account for human
errors in the annotations. The solution code is available on GitHub1.

Index Terms— sound event detection (SED), machine listen-
ing, audio tagging, convolutional neural networks

1. INTRODUCTION

The Detection and Classification of Acoustic Scenes and Events
(DCASE) [1], now in its fifth edition, is a recurring set of chal-
lenges aimed at developing computational scene and event analysis
methods. In Task 5, Urban Sound Tagging, the objective is to pre-
dict the presence or absence of 23 different types of noise sources
in audio recordings. The 23 fine-grained tags are further grouped
into a list of 7 coarse-grained tags. This hierarchical relationship is
illustrated in Figure 1.

For this challenge, SONYC [2] has provided 2351 recordings as
part of the train set, and 443 recordings as a part of the validate set.
All the recordings are ten seconds in length. Each recording was
annotated by three Zooniverse2 volunteers. Additional annotations,
specifically for validate set, were performed by the SONYC team
members and ground truth is then agreed upon by the SONYC team.

2. PROPOSED FRAMEWORK

2.1. CNN Architecture

Convolutional neural network (CNN) based architectures have been
proven to be useful for audio classification [4, 5]. In this work, we
use a modified form of MobileNetV2 [6]. The architecture of Mo-
bileNetV2 contains a 2D convolution layer at the beginning, fol-
lowed by 19 Bottleneck residual blocks (shown in Table 1). Spatial
average of the output from the final residual block is computed and
used for classification via a linear layer.

1https://github.com/sainathadapa/urban-sound-tagging
2https://www.zooniverse.org/

Figure 1: Hierarchical taxonomy of tags. Rectangular and round
boxes respectively denote coarse and fine tags. [3]

The proposed model contains few modifications to the above-
described architecture. The input Log Mel-spectrogram data is sent
to the MobileNetV2 after first passing the input through two con-
volution layers. This is so that the single channel input can be con-
verted into a three channel input. Instead of the spatial average,
Max pooling is applied on the output from the final residual block.
Additionally, the single linear layer at the end is replaced by two
linear layers. The full architecture is described in Table 2.

All the unmodified layers are initialized with weights from the
MobileNetV2 model trained on ImageNet [7]. Kaiming initializa-
tion [8] is used for the remaining layers.
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Table 1: Bottleneck residual block transforming from k to k′ chan-
nels, with stride s, and expansion factor t.

Operator t c n s
conv2d - 10 1 1
conv2d - 3 1 1
conv2d - 32 1 2

bottleneck 1 16 1 1
bottleneck 6 24 2 2
bottleneck 6 32 3 2
bottleneck 6 64 4 2
bottleneck 6 96 3 1
bottleneck 6 160 3 2
bottleneck 6 320 1 1
conv2d 1x1 - 1280 1 1
maxpool - 1280 1 -

linear - 512 1 -
linear - k 1 -

Table 2: Each line describes a sequence of 1 or more identical (mod-
ulo stride) layers, repeated n times. All layers in the same sequence
have the same number c of output channels. The first layer of each
sequence has a stride s and all others use stride 1. All spatial con-
volutions use 3× 3 kernels (except for the first two which use 1× 1
kernels). The expansion factor t is always applied to the input size
as described in Table 1. Modifications to the MobileNetV2 archi-
tecture are highlighted in bold.

2.2. Preprocessing and Data augmentation

The proposed model uses Log Mel-spectrogram as the representa-
tion format for the input data. Librosa [9] toolbox was used to com-
pute the Mel-spectrogram. For the Short-time Fourier transform
(STFT), window size of 256 and hop length of 694 was used. For
the Mel-frequency bins computation, lowest frequency and highest
frequency of 20Hz and 22050Hz was used, with the number of bins
being 1283. No re-sampling or additional preprocessing steps were
performed.

Several data augmentation techniques were used to supplement
the training data. Deformations such as Time stretching and Pitch
shifting that were previously shown to help in sound classification
were employed [5]. In addition, image augmentation methods such
as Random rotate, Grid distortion [10], and Random erasing [11]
were used. Mixup [12], an approach that linearly mixes two random
training examples was used as well.

3. RE-LABELING

For the validate set, we have access to both the ground truth and the
three annotations by Zooniverse volunteers. When the ground truth
of a label is positive, 36% of annotations (by Zooniverse volunteers)
do not match with the ground truth. If the quality of the labels can
be improved, it is quite possible that the accuracy of the model can

3https://www.kaggle.com/daisukelab/fat2019 prep mels1

Coarse
label

Fine
label

Positive
annotations

count

Predicted
score

music uncertain 1 0.10
music uncertain 3 0.98
music stationary 2 0.88

powered saw chainsaw 3 0.98
machinery impact - 0 0.05

Table 3: Predictions for few cases from the automatic re-labeling
model

be improved as well. Hence, a logistic regression model that takes
the annotations as input and estimates the ground truth label was
developed. This model was trained on the validate set and then
the ground truth estimate for the train set were generated. Table 3
shows some predictions from the model.

4. TRAINING

Two models were trained for this challenge:

• The first model generates probabilities for both the fine and
coarse labels. During training, whenever the annotation is
”unknown/other”, loss for the fine tags corresponding to this
coarse tag was masked out. Hence, this model does not gener-
ate predictions for the uncertain fine labels. For each training
example, loss is computed against each set of annotation sep-
arately. Average of the three loss values is taken as the loss
value for this training example.

• For the second model, predictions from the re-labeling model
described in Section 3 are used as labels. This model generates
probabilities for both the fine and coarse labels, including the
uncertain fine labels.

Both the models use identical input data representation, and
employ the same data augmentation techniques. They also use Bi-
nary Cross-entropy loss as the optimization metric. The models are
trained on the train set using the validate set to determine the stop-
ping point.

Training was done on PyTorch [13]. AMSGrad variant of the
Adam algorithm [14, 15] with a learning rate of 1e-3 was utilized for
optimization. Whenever the loss on validate set stopped improving
for 5 epochs, learning rate was reduced by a factor of 10. At the time
of prediction, test-time augmentation (TTA) in the form of Time
shifting was used.

5. RESULTS

The baseline system in [3] computes VGGish embeddings [4] of the
audio files, and builds a multi-label logistic regression on top of the
embeddings. An additional baseline system that trains a CNN on
the log Mel-spectrogram was described in [16]. Both the baseline
systems count a positive for a tag if at least one annotator has labeled
the audio clip with that tag. Table 4 shows the performance of the
two baseline systems compared against the proposed models. It can
be observed that re-labeling helped improve the Micro-AUPRC and
the Micro-F1 metrics in case of Fine-grained labels.
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FINE-GRAINED COARSE-GRAINED

Micro
AUPRC

Micro
F1

Macro
AUPRC

Micro
AUPRC

Micro
F1

Macro
AUPRC

Baseline - 1
(VGGish [3]) 0.672 0.502 0.427 0.762 0.674 0.542

Baseline - 2
(CNN9-avg [16]) 0.672 0.371 0.433 0.782 0.519 0.628

modified MobileNetV2
(no re-labeling) 0.772 0.489 0.594 0.861 0.602 0.702

modified MobileNetV2
(with re-labeling) 0.784 0.636 0.570 0.860 0.740 0.700

Table 4: Performance on validate set
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