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ABSTRACT

Audio classification has been an emerging topic in the last few
years, especially with the benchmark dataset and evaluation from
DCASE. This paper present our deep learning models to address the
acoustic scene classification (ASC) task of the DCASE 2019. The
models exploit multiple instance learning (MIL) method as a way
of guiding the network attention to different temporal segments of a
recording. We then propose a simple late fusion of results obtained
by the three investigated MIL-based models. Such fusion system
uses multi-layer perceptron (MLP) to predict the final classes from
the initial class probability predictions and obtains a better result on
the development and the leaderboard dataset.

Index Terms— DCASE 2019, acoustic scene classification,
convolutional neural network (CNN), multiple instance learning
(MIL), attention module.

1. INTRODUCTION

In this paper we will present the technical details of the systems sub-
mitted to Task 1, subtask A of the DCASE 2019 challenge1. This
subtask focuses on acoustic scene classification of data from the
same device as the available training data. We submitted four sys-
tems, all are based on the MIL framework which allows the trained
DNN models to have different attention levels to different audio
segments. Details of each system are described in Section 2.

2. MIL-BASED MODELS FOR ASC

The global workflow of our MIL-based systems is shown in Figure
1. To take into account multichannel setting, the systems first take
mel-spectrogram of left (L), right (R) channel and their difference
(R-L) as input. The original 10 second length signal is split into
10 segments of 1 second each, thus a bag in MIL framework here
contains 10 instances. As a result, the input to CNN layers has size
(10,3,100,50) where 100 stands for the number of mel frequency
bin and 50 is the number of time frame. We investigated the use of
three different CNN architectures for our three submitting systems
as follows.

• Model 1: This model is mostly inspired from the baseline pro-
vided by DCASE challenge, but adapted for the different input
size. This CNN is composed of 2 layers of convolution with 32
and 64 channels, and a kernel size of 7. The pooling layer after

1http://dcase.community/challenge2019/task-acoustic-scene-
classification

the first convolution has a kernel of size (5,5) and the second
one a kernel of size (4,10).

• Model 2: This model is based on data driven activation func-
tion for the convolution layers [1]. There are 3 layers of con-
volution, with 64, 128 and 256 channels, with kernels of size
(13,8), (6,5) and (5,4). Between each layer of convolution there
is a convolution layer with kernel of size (3,3) whose results
goes in a sigmoid function and then multiplies with the result
of the main convolution layer, this multiplication replaces the
ReLU activation function. The goal of this operation is to give
the network the ability to focus on certain patterns more inten-
sively.

• Model 3: This model is based on dilated convolution network
[2]. It also have gates like the Model 2 and consists of 3 layers
of convolution with kernels of size (5,5), dilation of (3,5) for
the first two layers and (1,1) for the last layer, and the number
of channels are 16, 32 and 64, respectively. The number of
channels is limited here because the purpose of this model is
to limit complexity in the same time of having a wide feature
detection area.

So far, we have extracted CNN features for each 1 second tem-
poral instance. We then use the two-stream architecture proposed
by Bilen et al. [3] for weighting each of them with respect to the
classes. This kind of attention module consists of parallel classi-
fication and localization streams. The former classifies each in-
stance by passing the CNN feature through a linear fully connected
layer with weights W a

cls. On the other hand, the localization layer
passes the same feature through another fully-connected layer with
weights W a

loc. This is followed by a softmax operation over the
resulting matrix which allows the localization layer to choose the
most relevant proposals for each class. Subsequently, the classifi-
cation stream output is weighted by the attention weights through
element-wise multiplication. This MIL-based architecture has been
discussed also e.g., in [4, 5] for audio classification. However, while
in [4] and [5] the class scores over the whole audio file are obtained
by summing the resulting weighted scores, we concatenate all the
score vectors as input to a higher MLP layer and we found that this
strategy offers a slightly higher classification accuracy.

2.1. Audio preprocessing

We use mel-spectrograms as input feature to the DNN as it has
been shown to be state-of-the-art features for audio classification
tasks and used in the baseline system. For the short-term Fourier
transform (STFT), we used a 40 ms length Hann window with 50%
overlap. The resulting mel-spectrogram for each 1 second audio
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Figure 1: Overall workflow of the three MIL-based systems. Model 1 uses the baseline’s CNN architecture, Model 2 uses gated CNN layers
while Model 3 uses dilated CNN layers.

segment has size of (100, 50) where 100 stands for the number of
mel frequency bins and 50 the number of time frame. Dorfer team
in DCASE2018 demonstrated that using left, right and difference
channels is an easy and efficient way of taking advantage of stereo
inputs [6], so we adopted the same strategy. As a resut, the final
input to CNN layers has size of (10,3,100,50).

2.2. Data Augmentation

We tried several ways for data augmentation such as noise addition,
pitch shifting and time stretching, but we did not observe the im-
provement in the overall classification result. In the end only mixup
strategy [7] brings little benefit to our systems. Mixup creates a new
training pair (sample, label) (X, y) by mixing two training pairs
(X1, y1) and (X2, y2) as:

X = λX1 + (1− λ)X2 (1)
y = λy1 + (1− λ)y2 (2)

In our implementation, we choose 60% mixed up samples in
each batch and λ = 0.8

3. MODEL FUSION

As each studied model can perform differently for each class, we in-
vestigate in addition the late fusion of all the three models. For this
purpose, given an input audio file, the class probability vectors pre-
dicted by each model are concatenated and passed through a MLP
layer, followed by a softmax to predict the final class as shown in
Figure 3. This ensemble learning is shown to provide better classifi-
cation result on the development dataset and the leaderboard dataset
in our test.
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Late model fusion strategy by MLP.

4. EXPERIMENT

4.1. Dataset

The provided development dataset is the TAU Urban Acoustic
Scenes 2019 dataset [8], which consists of recordings from the same
device for 10 known acoustic scene classes. It consists of about 40
hour recordings, balanced between classes in a total of 10 large Eu-
ropean cities. For each scene class, recordings were done in differ-
ent locations; for each recording location there are 5-6 minutes of
audio. The original recordings were split into 10 second segments
that are provided in individual files with an associated label.

This development dataset is then split into the training subset
contains recordings from only 9 of the cities, to test the general-
ization properties of the systems. The training/test subsets are cre-
ated based on the recording location such that the training subset
contains approximately 70% of recording locations from each city.
The test subset contains recordings from the rest of the locations,
and few locations from the tenth city. Overall, the dataset contains
14400 segments (144 per city per acoustic scene class).

The leaderboard dataset consists of a small subset of the official
evaluation dataset, with similar properties (distribution). The mate-
rial amount in the leaderboard dataset is considerably lower than
the official evaluation material in the DCASE challenge, 1200 sam-
ples for the leaderboard dataset and 7200 samples for the evaluation
dataset.

4.2. Training

All trainings are done on GPU, with a batch size of 64, with the
binary cross entropy for the loss function, and with RMSProp for
the optimizer. Model 1 is trained with a learning rate of 10−3 and
Models 2 and Model 3 are trained with a learning rate of 10−4.

The three models are firstly trained on the train set provided
by the challenge (fold 1) and early stopped with the corresponding
validation set. Then the MLP of the fusion model is trained on the
results of those first three models on the validation set and early
stopped on the test set.

In order to increase the number of data seen by the first three
models for their independent submission, we also trained the first
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Train Validation Test Leaderboard
Model 1 84.8 65.1 67.3 69.7
Model 2 96.8 70.9 70.6 71.0
Model 3 73.4 64.2 64.1 66.7
Fusion x 65.2 72.3 72.7

Baseline x x 62.5 63.0

Table 1: Average accuracy of the four submitted systems on the
training, validation, and test set split from the development dataset.

Classes Model 1 Model 2 Model 3 Fusion Baseline
Airport 59.8 71.9 55.1 72.2 48.4

Bus 75.2 74.2 62.6 76.1 62.3
Metro 64.9 62.3 51.5 65.8 65.1

Metro station 58.4 62.1 39.5 61.6 54.5
Park 85.0 77.8 80.1 81.6 83.1

Public square 61.2 54.7 61.4 54.5 40.7
Shopping mall 64.4 65.7 74.0 69.4 59.4

Street pedestrian 60.8 80.4 65.5 79.7 60.9
Street traffic 86.3 89.0 86.3 90.5 86.7

Tram 57.7 67.6 64.2 69.9 64.0
Overall 67.3 70.6 64.1 72.3 62.5

Leaderboard 69.7 71.0 66.7 72.7 63.0

Table 2: Classwise and overall accuracy on test set of the four sub-
mitted systems, when compared to the Baseline from the DCASE
challenge.

three models on the evaluation set and early stopped them on the
test set.

4.3. Results

The average accuracy for all classes obtained by our four submitted
systems on the training, validation, and test set split from the devel-
opment dataset (fold 1), and the leaderboard is shown in Table 1.
As can be seen, the results for training are significantly higher than
that for the evaluation and test set. This reveals a possible over-
fiting issue even thought we tried different forms of regularization
such as dropout and reducing the model size. Model 2 obtained the
higher accuracy than the Model 1 and Model 3 while the fusion of
all three models (named Fusion) reached the best result (i.e. 72.3%
accuracy) on the test set. It is also worth noting that all our four
systems outperform the Baseline from DCASE challenge on such
development dataset and the leaderboard dataset.

For more details on how each system performs in each class,
the classwise and overall accuracy of the four systems on the test
set, when compared to the Baseline from the DCASE challenge is
provided in Table 2. Table 3 shows the confusion matrix of the
fusion system on the split test set. As can be seen, some pairs
of classes are quite confusing for the prediction systems such as
bus/tram, air/shop, street/square.

5. CONCLUSION

This report presents our four machine learning models for acoustic
scene classification submitted to the Task 1a of the DCASE 2019
challenge. The first three models are based on MIL framework with
the use of CNN layers for feature learning. The fourth model ex-
ploits the late fusion of results obtained by the first three model and
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air. 310 78 26 8 8 0 1 0 5 0
shop. 78 306 46 28 3 0 1 0 2 0

metro sta. 19 14 268 10 4 1 5 4 49 0
street ped. 13 41 34 342 123 6 1 0 0 11
p. square. 0 2 7 36 211 24 1 0 2 49

str. trf. 1 0 3 4 23 364 1 0 0 11
tram 0 0 9 0 0 0 305 74 63 0
bus 0 0 7 0 0 0 51 316 26 0

metro 0 0 34 0 1 0 68 20 285 0
park 0 0 1 1 14 7 2 1 1 315

Table 3: Confusion matrix of the fusion model on the test set.

shown to provide better classification performance on the investi-
gated dataset. We are looking forward to seeing the final results
obtained on the official test set of the DCASE challenge.
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