
Detection and Classification of Acoustic Scenes and Events 2019 Challenge

SPECMIX: A SIMPLE DATA AUGMENTATION AND WARM-UP PIPELINE
TO LEVERAGE CLEAN AND NOISY SET FOR EFFICIENT AUDIO TAGGING

Technical Report

Eric Bouteillon

France
ericspamkiller-kaggle@yahoo.fr

ABSTRACT

This paper presents a semi-supervised warm-up pipeline used to
create an efficient audio tagging system as well as a novel data
augmentation technique for multi-labels audio tagging named by
the author SpecMix. These new techniques were applied to our
submitted audio tagging system to the Freesound Audio Tagging
2019 challenge carried out within the DCASE 2019 Task 2 chal-
lenge [3]. Purpose of this challenge consist of predicting the au-
dio labels for every test clips using machine learning techniques
trained on a small amount of reliable, manually-labeled data, and
a larger quantity of noisy web audio data in a multi-label audio
tagging task with a large vocabulary setting. Results are repro-
ducible, description of requirements, steps to reproduce and
source code are available on GitHub1. Source code is released un-
der an open source license (MIT).

Index Terms— Audio Tagging, Fully Convolutional Neural
Networks, Noisy Labels, Warm-up Pipeline, SpecMix

1. INTRODUCTION

Reliable automatic general-purpose audio tagging systems are
difficult to build due to the complexity of sounds around us. A
significant amount of manual effort goes into tasks like annotat-
ing sound collections and providing captions for non-speech
events in audiovisual content. To tackle this problem, Freesound
(an initiative by MTG-UPF that maintains a collaborative data-
base with over 400,000 Creative Commons Licensed sounds) and
Google Research’s Machine Perception Team (creators of Au-
dioSet, a large-scale dataset of manually annotated audio events
with over 500 classes) have teamed up to develop the dataset for
Freesound Audio Tagging 2019 challenge carried out within the
DCASE 2019 Task 2 challenge [3]. One of the challenge of this
dataset is the small amount of reliable manually labeled data com-
pared to the important number of unreliable automatically labeled
data. The second challenge of this dataset is to correctly identify
more than one label for a single audio sample.

Two common solutions to tackle the small number of
samples with good label are: 1/ fully exploit these samples with
correct labels by using data augmentation to generate artificial
training data; 2/ filter the samples with unreliable label in a semi-
supervised way before accepting them in training set. Let’s dig
further into these techniques.

1 https://github.com/ebouteillon/freesound-audio-tagging-2019

Data augmentation has been proposed as a method to
generate additional training data for Automatic Speech Recogni-
tion. For example, in [5], artificial data was augmented for low
resource speech recognition tasks. Vocal Tract Length Normal-
ization has been adapted for data augmentation in [6]. Augmenta-
tion can also be applied on spectral domain like SpecAugment [1]
but these techniques augment only the sample without changing
the associated label. We present in this paper a novel data aug-
mentation technique for multi-labels audio tagging, named by the
author SpecMix, which allows to create additional training sam-
ples with new labels well suited for multi-labels problems.

Semi-supervised learning (SSL) has a large literature
due to the different techniques to leverage unlabeled data. A
broad class of approaches contains feature learning with unla-
beled data, based on generative models including variational
auto-encoders [7], or generative adversarial networks [8]. An-
other technique is self-training, which refers to retraining a model
based on its own predictions on unlabeled data. Self-training is
widely applied in practice. Data distillation [9] proposed an ap-
proach based on self-training to visual structure prediction prob-
lems. This paper presents a semi-supervised warm-up pipeline
used to create an efficient audio tagging system by filtering unre-
liable samples in a multi-stage process and assembling model
checkpoints to improve the global accuracy of the system.

2. AUDIO DATA PREPROCESSING

In our approach, audio clips were first trimmed of leading and
trailing silence (threshold of 60 dB), then converted into 128-
bands mel-spectrogram using a 44.1 kHz sampling rate, hop
length of 347 samples between successive frames, 2560 FFT
components and frequencies kept in range 20 Hz – 22,050 Hz.
Last preprocessing consisted in normalizing (mean=0,
variance=1) the resulting images and duplicating to 3 channels.

3. DATA AUGMENTATION

One important technique to leverage a small training set is to aug-
ment this set using data augmentation. For this purpose we cre-
ated a new augmentation named SpecMix. This new augmenta-
tion is an extension of SpecAugment [1] inspired by mixup [2].

SpecAugment applies 3 transformations to augment a train-
ing sample: time warping, frequency masking and time masking
on mel-spectrograms.

https://github.com/ebouteillon/freesound-audio-tagging-2019
https://research.google.com/audioset/
https://research.google.com/audioset/
https://research.google.com/teams/perception/
https://www.upf.edu/web/mtg
https://freesound.org/

Detection and Classification of Acoustic Scenes and Events 2019 Challenge

mixup: create a virtual training example by computing a
weighted average of two samples inputs and targets.

3.1. SpecMix

SpecMix is inspired from the two most effective transformations
from SpecAugment and improve them by replacing simple mask-
ing by another sample excerpt replacement. Moreover we extends
this technique by creating virtual multi-labels target like mixup:

1. Frequency replacement is applied so that f consecutive
mel-frequency channels [f0, f0+f) are replaced from an-

other training sample, where f is first chosen from a
uniform distribution from minimal to maximum the fre-
quency mask parameter F, and f0 is chosen from [0,
ν−f). ν is the number of mel frequency channels.

2. Time replacement is applied so that t consecutive time
steps [t0, t0+t) are replaced from another training sam-
ple, where t is first chosen from a uniform distribution
from 0 to the time mask parameter T, and t0 is chosen
from [0, τ−t). τ is the number of time samples.

3. Target of the new training sample is computed as the
weighted average of each original samples. The weight

Figure 1: Comparison of mixup, SpecAugment and SpecMix.

Detection and Classification of Acoustic Scenes and Events 2019 Challenge

for each original sample is proportional to the number of
pixel from that sample. Our implementation uses same
replacement sample for Frequency replacement and
Time replacement, so it gives us a new target computed
based on:

y=(1−a)⋅y1+a⋅y2 (1)

where a=(f /v)+(t /τ)−((f / v)⋅(t /τ))

3.2. Others data augmentation

We added other data augmentation techniques:
• mixup before SpecMix. A small improvement is ob-

served (lwlrap increased by +0.001). mixup is first ap-
plied on current batch, generating new samples for the
current batch and then SpecMix is applied on these
newly created samples. In the end, combining mixup
and SpecMix, up to four samples are involved in the
generation of one single sample.

• zoom and crop: a random zoom between 1. and max
1,05 is applied with probability 75%, a small improve-
ment is seen (lwlrap increased by +0.001).

• lighting: a random lightning and contrast change con-
trolled is applied with probability 75%.

4. MODEL

In this section, we describe the neural network architectures used:
Version 1 consists in an ensemble of a custom CNN

“CNN-model-1” defined in Table 1 and a VGG-16 with batch-
normalization. Both are trained in the same manner.

Version 2 consist of only our custom CNN “CNN-
model-1”, defined in Table 1.

Version 3 is evaluated for Judge award and it is same
model as version 2.

Input 128 × 128 × 3

3 × 3 Conv(stride=1, pad=1)−64−BN−ReLU

3 × 3 Conv(stride=1, pad=1)−64−BN−ReLU

3 × 3 Conv(stride=1, pad=1)−128−BN−ReLU

3 × 3 Conv(stride=1, pad=1)−128−BN−ReLU

3 × 3 Conv(stride=1, pad=1)−256−BN−ReLU

3 × 3 Conv(stride=1, pad=1)−256−BN−ReLU

3 × 3 Conv(stride=1, pad=1)−512−BN−ReLU

3 × 3 Conv(stride=1, pad=1)−512−BN−ReLU

concat(AdaptiveAvgPool2d + AdaptiveMaxPool2d)

Flatten−1024-BN-Dropout 25%

Dense-512-ReLU-BN-Dropout 50%

Dense-80

Table 1: CNN-model-1 architecture. BN: Batch Normalisation,
ReLU: Rectified Linear Unit.

5. TRAINING

Training is done in 4 stages, each stage generating a modelx using
the same CNN architecture but trained on a different subsets of
curated or noisy datasets. A modelx is generated at a stage using
the 10-folds cross-validation process, and we save for each of the
10 folds the weights of trained models. These weights are named
here model checkpoint. Batches of 128 augmented excerpts of
randomly selected sample mel-spectrograms are used. The imple-
mentation was done using the fastai library [4]. These modelx are
used for 3 things:

• warm-up the model training in the next stage
• help in a semi-supervised way to select noisy elements
• participate in the test prediction (except model 1)

 An important point of this competition, is that we are not al -
lowed to use neither external data nor pretrained models. So our
pipeline presented below only used curated and noisy sets from
the competition.

• Stage 1: Train a model (named “model1”) from scratch
only using the noisy set. Then compute 10-folds cross-
validated per-clip label-ranking average precision (lrap)
[10] on noisy set and noted as lrap1. lrap1 is a set of val-
ues, one for each clip in a dataset and shall not be con-
fused with the competition metric (lwlrap) which is a
single value computed for a whole dataset.

• Stage 2: Train a model (named “model2”) only on cu-
rated set but use model1 checkpoints as pretrained model
(to initialize CNN weights for each fold). Then compute
10-folds cross-validated per-clip lrap on noisy set
(lrap2).

• Stage 3: Let’s start semi-supervised learning: our algo-
rithm selects samples from noisy set that are (almost)
correctly classified by both model1 and model2: we sim-
ply keep sample from noisy set having a geometric
mean of (lrap1, lrap2) higher or equal to 0,5. A maximum
of 5 samples per fold and per label is selected. Then
train a model (model3) on curated plus selected noisy
samples and use model2 checkpoints as pretrained
model. In the end, compute 10-folds cross-validated per-
clip lrap on noisy set (lrap3).

• Stage 4: Let’s continue semi-supervised learning: our
algorithm selects that time samples from noisy set which
are strictly correctly classified by model3, i.e. samples
from noisy set getting a lrap3 equal to 1. Then train a
model (model4) on curated plus selected noisy samples
and use model3 checkpoints as pretrained model.

• Last step: final predictions are the average of predic-
tions on test set from model2, model3 and model4.

 Before training, noisy and curated datasets were split in 10 sets
each for cross-validation. These sets were kept unchanged for all
models training. When training a model checkpoint on the ith fold
of the cross-validation, the ith set of noisy dataset and ith set of cu-
rated dataset are kept out of fold; the 9 remaining sets of noisy and
curated are kept eligible for training. Then these eligible training
data were additionally filtered as described above (sum-up in Fig-
ure 2) to form the training data. It means that the ith set never leaks
in during the training of the ith fold whatever the modelx check-
point. Then the model trained for ith fold computes predictions for
the ith split of curated (10% of noisy). Once we have all predic-

https://www.kaggle.com/c/freesound-audio-tagging-2019/overview/evaluation
https://scikit-learn.org/stable/modules/model_evaluation.html#label-ranking-average-precision
https://docs.fast.ai/

Detection and Classification of Acoustic Scenes and Events 2019 Challenge

tions, we are able to compute the per-clip (lrapx) to select noisy
samples for following stages’ instance selection.
 Notice that most semi-supervised techniques are doing instance
selection based on the prediction probabilities. Instead, we select
the valid instances by thresholding the per-clip lrap metric.

6. INFERENCE

During inference (prediction on test set), we split the test audio
clips in windows of 128 time samples (2 seconds), windows were
overlapping. Then these samples are fed into our models to obtain
predictions. All predictions linked to an audio clip are averaged to
get the final predictions to submit.
 This competition had major constraints for test prediction infer-
ence: submission must be made through a Kaggle kernel with
time constraints. As our solution requires a GPU, the inference of
the whole unseen test set shall be done in less than an hour.
 In order to match this hard constraint, we took following deci -
sions:

• use same preprocessing and inputs for all models,
• limit the final ensemble to two models architecture only,
• limit the overlapping of windows,
• as the unseen test set was reported to be three times the

public test set by organizers, then we made sure to infer
the public test set in less than 1,000 seconds, which
should allow the kernel to infer the unseen test set in
about 3,000 seconds and keep a 20% time margin for
safety.

7. EXPERIMENTS AND RESULTS

To asses the performance of our system, we provide results in Ta-
ble 2. The metric used is lwlrap (label-weighted label-ranking av-
erage precision). In one hand, evaluation of performances on
noisy set (lwlrap noisy) set and curated set (lwlrap curated) are

computed using the competition metric on generated modelx’s
prediction. Prediction for one clip in noisy or curated sets is pro-
duced by one single model checkpoint (outcome of each of the 10
iteration of the cross-validation process). On another hand, evalu-
ation on test set predictions are values reported by the public
leaderbord during the Kaggle competition on public test set. Pre-
diction for one public test element is the average of the predic-
tions of the 10 checkpoints for modelx. We did not score the
model1 with public set during the competition, hence the N/A
value reported for lwlrap leaderboard.

Model lwlrap noisy lwlrap curated lwlrap leaderboard

model1 0.65057 0.41096 N/A

model2 0.38142 0.86222 0.723

model3 0.56716 0.87930 0.724

model4 0.57590 0.87718 0.724

average N/A N/A 0.733

Table 2: Empirical results of version 2 (single CNN-model-1) us-
ing proposed warm-up pipeline

Each stage of the warm-up pipeline generates a model
with excellent prediction performance on the test test. Each model
would give us a silver medal with the 25th position on the public
leaderboard. Moreover these warm-up models bring sufficient di-
versity on their own, as a simple averaging of their predictions
(lwlrap .733) gives 16th position on the public leaderboard.

Final 12th position of the author was provided by ver-
sion 1, which is an average of the predictions given by CNN-
model-1 and VGG-16, both trained the same way.

8. CONCLUSION

This paper presents a semi-supervised warm-up pipeline used to
create an efficient audio tagging system as well as a novel data
augmentation technique for multi-labels audio tagging named by
the author SpecMix. These techniques leveraged both clean and
noisy sets and were shown to give excellent results.
 These results are reproducible, description of requirements,
steps to reproduce and source code are available on GitHub1.
Source code is released under an open source license (MIT).

9. ACKNOWLEDGMENT

These results were possible thanks to the infinite support of my
5 years-old boy, who said while I was watching the public leader-
board: “Dad, you are the best and you will be at the very top”. ❤️
 I also thank the whole kaggle community for sharing knowl-
edge, ideas and code. In peculiar daisuke for his kernels during the
competition and mhiro2 for his simple CNN-model and all the
competition organizers.

1 https://github.com/ebouteillon/freesound-audio-tagging-2019

Figure 2: Warm-up pipeline

https://www.kaggle.com/mhiro2/simple-2d-cnn-classifier-with-pytorch
https://www.kaggle.com/mhiro2
https://www.kaggle.com/c/freesound-audio-tagging-2019/kernels
https://www.kaggle.com/daisukelab
https://github.com/ebouteillon/freesound-audio-tagging-2019
https://www.kaggle.com/c/freesound-audio-tagging-2019/overview/evaluation

Detection and Classification of Acoustic Scenes and Events 2019 Challenge

10. REFERENCES

[1] Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng
Chiu, Barret Zoph, Ekin D. Cubuk, Quoc V. Le, “SpecAug-
ment: A Simple Data Augmentation Method for Automatic
Speech Recognition”, ar X iv:1904.08779 , 2019.

[2] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and
David Lopez-Paz. “mixup: Beyondempirical risk minimiza-
tion”. arXiv preprint arXiv:1710.09412, 2017.

[3] Eduardo Fonseca, Manoj Plakal, Frederic Font, Daniel P. W.
Ellis, and Xavier Serra. "Audio tagging with noisy labels and
minimal supervision". Submitted to DCASE2019 Workshop,
2019. URL: https://arxiv.org/abs/1906.02975

[4] fastai, Howard, Jeremy and others, 2018, URL: https://
github.com/fastai/fastai

[5] A. Ragni, K. M. Knill, S. P. Rath, and M. J. F. Gales, “Data
augmentation for low resource languages,” in INTER-
SPEECH, 2014,

[6] N. Jaitly and G. Hinton, “Vocal Tract Length Perturbation
(VTLP)improves speech recognition,” in ICML Workshop
on Deep Learn-ing for Audio, Speech and Language Process-
ing, 2013.

[7] D. Kingma, S. Mohamed, D.J. Rezende, and M.
Welling,“Semi-supervised learning with deep generative
models,” in NIPS, 2014.

[8] J.T. Springenberg, “Unsupervised and semi-supervised learn-
ing with categorical generative adversarial net-works,” inI-
CLR, 2015.

[9] I. Radosavovic, P. Dollar, R. Girshick, G. Gkioxari, and K.
He, “Data distillation: Towards omni-supervised learning,”
inCVPR, 2018

[10] Label Ranking Average Precision (lrap). Sklearn description.
URL: https://scikit-learn.org/stable/modules/model_evalua-
tion.html#label-ranking-average-precision

https://scikit-learn.org/stable/modules/model_evaluation.html#label-ranking-average-precision
https://scikit-learn.org/stable/modules/model_evaluation.html#label-ranking-average-precision
https://github.com/fastai/fastai
https://github.com/fastai/fastai
https://arxiv.org/abs/1906.02975
https://arxiv.org/abs/1710.09412
https://arxiv.org/abs/1904.08779
https://arxiv.org/abs/1904.08779
https://arxiv.org/abs/1904.08779

	1. INTRODUCTION
	2. AUDIO DATA PREPROCESSING
	3. DATA AUGMENTATION
	3.1. SpecMix
	3.2. Others data augmentation

	4. MODEL
	5. TRAINING
	6. INFERENCE
	7. Experiments and RESULTS
	8. CONCLUSION
	9. ACKNOWLEDGMENT
	10. REFERENCES

