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ABSTRACT 

The main scientific question of this year DCASE challenge, 

Task 4 - Sound Event Detection in Domestic Environments, 

is to investigate the types of data (strongly labeled synthetic 

data, weakly labeled data, unlabeled in domain data) re-

quired to achieve the best performing system. In this paper, 

we proposed a deep learning model that integrates Convo-

lution Neural Network (CNN) with Non-Negative Matrix 

Factorization (NMF). The best performing model can 

achieve a higher event based F1-score of 30.39% as com-

pared to the baseline system that achieved an F1-score of 

23.7% on the validation dataset. Based on the results, even 

though synthetic data is strongly labeled, it cannot be used 

as a sole source of training data and resulted in the worst 

performance. Although, using a combination of weakly and 

strongly labeled data can achieve the highest F1-score, but 

the increment was not significant and may not be worth-

while to include synthetic data into the training set. Results 

have also suggested that the quality of labeling unlabeled 

in domain data is essential and can have an adverse effect 

on the accuracy rather than improving the model perfor-

mance if labeling was not done accurately.  

Index Terms— Non-negative matrix, convolutional 

neural network, DCASE 2019 

1. INTRODUCTION 

The primary objective of a Sound Event Detection (SED) 

system is to identify the type of sound source present in an 

audio clip or recording and returns the onset and offset of 

the identified source. Such a system has great potential in 

several domains such as activity monitoring, environmental 

context understanding, and multimedia event detection [1], 

[2]. However, there are several challenges associated with 

SED in real life scenarios.  
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Firstly, in real-life scenarios, different sound event can 

occur simultaneously [2]. Secondly, the presence of back-

ground noise could complicate the identification of sound 

event within a particular time frame [3]. This problem is 

further aggravated when the noise is the prominent sound 

source resulting in a low Signal to Noise Ratio (SNR). 

Thirdly, each event class is made up of different sound 

sources, e.g. a dog bark sound event can be produced from 

several breeds of dogs with different acoustic characteristics 

[1]. Finally, to achieve the best results, SED detection algo-

rithm may require strongly labeled data where the occur-

rence of each event with its onset and offset are known with 

certainty during the model development phase. While such 

data are useful, collecting them is often time-consuming and 

sizes of such dataset are often limited to minutes or a few 

hours [3], [4]. In certain scenarios such as an approaching 

vehicle, the onset and offset time is ambiguous due to the 

fade in and fade out effect [5] and is subjective to the person 

labeling the event. 

On the other hand, there exist a substantial amount of 

data known as the weakly labeled data where only the oc-

currence of an event are known without any offset or onset 

annotations. While it seems like the core information is 

missing, previous implementations proposed in the annual 

Detection and Classification of Acoustic Scenes and Events 

(DCASE) challenge that utilized only weakly labeled data 

had achieved a certain level of success [6]-[8]. Although a 

large number of different SED system  were proposed in the 

past, a majority of them were mainly based on Gaussian 

Mixture Model (GMM) [9], Hidden Markov Model (HMM) 

[10] or the use of dictionaries constructed using NMF [11-

13]. However, due to the rising success of deep learning in 

other domains [14-17], deep learning for SED development 

is now a norm and has been shown to perform slightly better 

than established methods [1]. Riding on the success of deep 

learning, this paper proposed a deep learning model that in-

tegrates NMF and CNN which can provide an approximate 
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strong label to the weakly labeled data. Results have shown 

that proposed system achieved a higher event based F1-

score of 30.39% as compared to the baseline system that 

achieved an F1-score of 23.7% on the validation dataset. 

2. RELATED WORKS 

In the recent years, SED development has been over-

whelmed with the use of deep learning algorithms particu-

larly the use of CNN or Convolutional Recurrent Neural 

Network (CRNN). This phenomenon was also reflected in 

the 2018 DCASE challenge, where almost all participants 

for Task 4 (Large-scale weakly labeled semi-supervised 

sound event detection in domestic environments) proposed 

the use of CRNN. As discussed in [1], CNN has the benefit 

of learning filters that are shifted in both time and frequency 

while Recurrent Neural Network (RNN) has a benefit of in-

tegrating information from the earlier time windows. Thus, 

a combined architecture has the potential to benefit from 

two different approaches that suggest its popularity.  

The CRNN architecture proposed by Cakir et al. [1] 

first extracted features through multiple convolutional lay-

ers (with small filters spanning both time and frequency) 

and pooling in the frequency domain. The features were 

then fed to recurrent layers, whose features were used to ob-

tain event activity probabilities through a feedforward fully 

connected layer. Evaluation over four different datasets had 

also shown that such a method has a better performance as 

compared to CNN, RNN and other established SED system. 

However, such a system would require a large amount of 

annotated data for training.  

Lu [8] proposed the use of Mean Teacher Convolution 

System that won the DCASE Task 4 challenge with an F1 

score of 32.4%. In their system, context gating was used to 

emphasize the important parts of audio features in frames 

axis. Mean-Teacher semi-supervised method was then ap-

plied to exploit the availability of unlabeled data to average 

the model weights over training steps. Although, this sys-

tem won the 2018 challenge, there is still a large room for 

improvement.  

3. SYSTEM OVERVIEW 

3.1. Dataset Description 

In this year DCASE challenge, the types of dataset available 

for training can be summarized in Table 1. 

3.2. Audio Processing 

In this system, training inputs are mel-frequency scaled. 

This is because they can provide a reasonably good repre-

sentation of signal’s spectral properties. At the same time, 

they also provide reasonably high inter-class variability to 

allow class discrimination by many different machine learn-

ing approaches [18]. 

In this paper, audio clips were first resampled to 32 kHz 

that were suggested to contain the most energies [19]. 

Moreover, segments containing higher frequency may not 

be useful for event detection in daily life [8]. A short-time 

fast Fourier transform with a Hanning window size of 1024 

samples and a hop size of 500 samples was used to tabulate 

the spectrogram. After that, a mel filter bank of 64 and 

bandpass filter of 50 Hz to 14 kHz was applied to obtain the 

mel spectrogram to be used as input to the training model. 

Finally, a logarithm operation was applied to obtain the log 

mel spectrogram. 

 

Class Synthetic Weakly 

Labeled 

Unlabeled 

Speech 2132 550  

Dog 516 214 

Cat 547 173 

Alarm/Bell 

Ringing 

755 205 

Dishes 814 184 

Frying 134 171 

Blender 540 134 

Running 

Water 

157 343 

Vacuum 

Cleaner 

204 167 

Electric 

Shaver / 

Toothbrush 

230 103 

 Number of Events Number 

of Clips 

6032 2244 14412 

Table 1. Given dataset for Task 4 

3.3. Non-negative Matrix Factorization 

The NMF popularized by Lee and Seung [20] is an effective 

method to decompose a non-negative matrix, 0,L NM  

, into two non-negative matrices, 
0,L RW    and 

0,R NH   . Where R is the number of components.  

Therefore, it can be represented as 

M WH                                                                           (1)       

Where 𝑊 can be interpreted as the dictionary matrix and 𝐻 

can be interpreted as the activation matrix. These two ma-

trices can be randomly initialized and updated through the 

multiplicative rule given as [20] 

1

T

T

M
W

WHW W
W

                                                           (2) 
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W is commonly extracted on isolated events to form a 

dictionary and SED is performed by applying a threshold on 

the activation matrix obtained from the decomposition of 

the test data [12]. Since NMF only works on non-negative 

matrix, it was applied on the mel spectrogram prior to the 

logarithm operation. Thus, M  represent the mel spectro-

gram  with L as the number of mel bins and N as the num-

ber of frames. In this paper, instead of consolidating W  to 

form the dictionary. We find the H to indicate which 

frames of each audio clip are activated (above a pre-defined 

threshold) to label the weakly labelled data so that the 

weakly labelled data becomes an approximated strongly la-

belled data.  

3.4. Convolutional Neural Network 

The CNN used in this system is modified based on the one 

proposed in [19]. Kong et al. [19] proposed four different 

CNN with a different number of layers and  pooling opera-

tors and found that the nine layers CNN with max pooling 

operator achieved the best performance. In this paper, we 

are interested in finding out whether with the inclusion of 

NMF, will a shallower CNN produce a comparable or even 

a better result. 

Proposed Kong [19] 

Input : log-mel spectrogram 

5 5@64

,BN ReLU

 
 
 

  
3 3@64

2
,BN ReLU

 
 

 
 

2 x 2 Max Pooling 

5 5@128

,BN ReLU

 
 
 

 
3 3@128

2
,BN ReLU

 
 

 
 

2 x 2 Max Pooling 

5 5@ 256

,BN ReLU

 
 
 

 
3 3@ 256

2
,BN ReLU

 
 

 
 

2 x 2 Max Pooling 

5 5@512

,BN ReLU

 
 
 

 
3 3@512

2
,BN ReLU

 
 

 
 

Table 2. CNN architectures 

In this paper, a 5 layers CNN with max pooling opera-

tor is proposed. In this architecture, it consists of 4 convo-

lutional layers of kernel size 5 x 5 with a padding size of 2 

x 2 and strides 1 x 1. This architecture is almost similar to 

Kong et al. [19] except for the kernel size and the number 

of layers. For both architectures, Binary Cross Entropy is 

adopted as the loss function which is similar to the loss 

function adopted in [19] given as  

( , )

1

[ ln( ) (1 ) ln(1 )]

K

BCE p y k k k k

k

l y p y p

=

= + − −                  (4) 

 

3.5. System Flow 

In this year DCASE challenge, Task 4 - Sound Event De-

tection In Domestic Environments, is specifically orga-

nized to investigate the types of data (strongly labeled syn-

thetic data, weakly labeled data, unlabeled in domain data) 

required to achieve the best performing system. Therefore, 

the flow of the proposed system depends on the types of 

data used. While strongly labeled and weakly labeled data 

can be used readily, unlabeled data require a model to be 

trained in advance so that its content can be tagged and be 

used as training data. The flow of our proposed system can 

be summarized in Fig. 1.  

 
Fig. 1. Flowchart of proposed architecture 

4. RESULTS AND DISCUSSION 

Based on the proposed system flow, we tested the accuracy 

of our proposed architecture using the different combina-

tion of data on the given validation data that is a mixture of 

DCASE 2018 task 4 test set, and evaluation set consisting 

of 1168 audio clips with 4093 events. Based on the results 

shown in Table 3, the model trained using both weakly la-

beled data and synthetic data achieved the highest accuracy 

as compared to using a single type of data. It is surprising 

to find that strongly labeled synthetic data was not able to 

achieve higher accuracy than weakly labeled data. 

Whereas, a combination of data can increase the accuracy 

of the model. However, the increment in the event based F1 
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score was only 0.66%. Therefore, it may not be worthwhile 

to include synthetic data if synthetic data cannot be gener-

ated easily. 

With the available of a large set of unlabeled in domain 

data, the next phase of the test was to tag (classify) the un-

labeled data using the model trained using only weakly la-

beled data and the model trained using weakly labeled and 

strongly labeled synthetic data. As the performance of a 

model trained using synthetic data was not up to expecta-

tion, it was not utilized in the next phase to label the unla-

beled data. 

Based on Table 4 and 5, results have shown that using 

only unlabeled in domain data or training a model with the 

inclusion of unlabeled in domain data labeled using differ-

ent models, accuracy decreases. This could be due to the 

quality of unlabeled data being labeled. As seen in the re-

sults, if unlabeled in domain data were labeled using a 

model with higher accuracy, then the validation results 

would be higher. Thus, it can be deduced that if unlabeled 

data was not properly labeled, it can have an adverse effect 

on the accuracy rather than improve the model performance. 

 

Type of 

Data 

Weakly 

Labeled 

Strongly 

Labeled 

Synthetic 

Data 

Weakly 

Labeled 

and 

Strongly 

Labeled 

Synthetic 

Data 

Event 

Based F1 

29.73% 15.27% 30.39% 

Segment 

Based F1 

55.79% 43.59% 57.66% 

Table 3. Accuracy using different types of data 

 

Type of 

Data 

Unlabeled Data 

 

Weakly Labeled 

Data and Unla-

beled Data 

 

Event 

Based F1 

25.47% 27.2% 

Segment 

Based F1 

45.88% 48.52% 

Table 4. Accuracy of model with unlabeled data labeled 

using model with F1 29.73% 

 

In Table 6, the comparison of results was made be-

tween the best performing model trained using weakly la-

beled data and synthetic strongly labeled data,  Kong et al. 

[19] model and baseline model. Although the proposed 

model can achieve a better event based F1 score as com-

pared to both other models, it has a lower segment based 

F1-score as compared to Kong et al. [19]. It may be due to 

the way how NMF was utilized. In this system, NMF was 

used to find H that indicates when the event was activated 

when the calculated H of certain frames were above a pre-

defined threshold. However, if the clip contains multiple 

events, then NMF will indicate that those frames above a 

predefined threshold belong to all the events present in the 

audio. Therefore, it may be worthwhile to investigate the 

use of source separation before the application of NMF. 

 

Type of 

Data 

Unlabeled Data 

 

Weakly La-

belled, Strongly 

Labeled Syn-

thetic Data and 

Unlabeled Data 

 

Event 

Based F1 

26.64% 27.84% 

Segment 

Based F1 

47.13% 50.92% 

Table 5. Accuracy of model with unlabeled data labeled 

using model with F1 30.39% 

 

Finally, the best four models are chosen to be submitted 

for the DCASE task 4 challenge, namely, 1) model trained 

using weakly labeled and strongly labeled synthetic data, 2) 

model trained using weakly labeled data, 3) model trained 

using only all data, 4) model trained using weakly labeled 

and unlabeled data. 

 

Type of 

Data 

Proposed Kong et 

al. [19] 

Baseline 

Event 

Based F1 

30.39% 24.1% 23.7% 

Segment 

Based F1 

57.66% 63.0% 55.2% 

Table 6. Comparison of results 

5. CONCLUSION 

In this paper, a five layers CNN with the use of NMF was 

proposed for DCASE 2019 task 4. The proposed system 

was able to achieve an event based F1-score of 30.39% and 

segment based accuracy of 57.66% as compared to the 

baseline model that has an event-based F1-score of 23.7% 

and segment based accuracy of 55.2%. However, there is 

still room for improvement, particularly in the aspect of 

source separation that may very well helps in the accuracy 

of sound event detection.  
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