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ABSTRACT

This paper describes our three-stage approach system for sound
event localization and detection (SELD) task. The system consists
of three parts: sound activity detection (SAD), sound event detec-
tion (SED), and sound event localization (SEL). Firstly, we employ
the multi-resolution cochleagram (MRCG) from 4-channel audio
and convolutional recurrent neural network (CRNN) model to de-
tect sound activity. Secondly, we extract log mel-spectrogram from
4-channel audio, harmonic percussive source separation (HPSS) au-
dio, mono audio, and train another CRNN model. Lastly, we exploit
the generalized cross-correlation phase transform (GCC-PHAT) of
each microphone pairs as an input feature of the convolutional neu-
ral network (CNN) model for the SEL. Then we combine SAD,
SED, and SEL results to obtain the final prediction for the SELD
task. To augment overlapped frames that degrade overall perfor-
mance, we randomly select two non-overlapped audio files and mix
them. We also average the predictions of several models to improve
the result. Experimental results on the four cross-validation splits
for the TAU Spatial Sound Events 2019-Microphone Array dataset
are error rate: 0.23, F score: 85.91%, DOA error: 3.62◦, and frame
recall: 88.66%, respectively.

Index Terms— Sound activity detection, sound event detec-
tion, direction of arrival estimation, convolutional neural network,
recurrent neural network

1. INTRODUCTION

This paper was intended to explain our algorithm for DCASE 2019
challenge’s Task 3. The task 3 of the DCASE 2019 challenge is
’Sound Event Localization and Detection (SELD) [1], which pur-
pose is to detect and localize sound events. There are many stud-
ies for sound event detection (SED) which is to detect the onset
and offset times for each sound event in an audio recording, such
as clearing throat, coughing, human laughter, dog bark, and phone
ringing. In SED task, there are two kinds of systems depending on
whether the maximum number of sounds can be detected. One is
called monophonic SED system which can only detect one sound
at a time, the other is called polyphonic SED system which can
detect multiple overlapping sound events at given time instance.
Polyphonic SED task is more challenging than monophonic, but
the performance improvements have been made since the multi la-
bel deep neural network (DNN) based SED has been first proposed
[2]. Especially, recurrent neural network (RNN) and convolutional
recurrent neural network (CRNN) based SED which can model the
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sequential information of the audio recording has shown good per-
formance [3, 4, 5]. Recently, polyphonic SED systems using bin-
aural [6] and spatial [7] features in multi-channel environment was
proposed. In multi-channel environment, the SED systems can de-
tect sound events more accurate then single-channel, and also can
localize the sound events.

In this paper, we propose a three-stage approach for sound event
localization and detection which consists of sound sound activity
detection (SAD), sound event detection, sound event localization
(SEL).

2. SOUND ACTIVITY DETECTION

To more accurately detect if sounds are present or not, we design the
separate SAD model with multi-resolution cochleagram (MRCG)
[8] and CRNN. We attempt two model, named SAD-01 and SAD-
012. SAD-01 means that model can classify only sounds are present
or not, and SAD-012 can classify sounds into three classes; no
sounds, one sound, two sounds. In this task, the SAD 012 model
is valid because maximum two sounds occur at the same time.

2.1. Data augmentation

Data augmentation is shared between SAD model and SED model.
We used two methods, pitch shifting and block mixing on mono-
phonic audio clip.[9]

2.2. Feature extraction

Fig. 1 shows the MRCG features that we extracted. This process
was performed on each of the 4-channel audio signals.

2.3. Deep learning model

Fig. 2 shows the CRNN model for sound activity detection and
sound event detection. Only the CNN block is different between the
SAD and SED models. As shown as Fig. 3 (a), 3 x 1 convolution
filter was used for SAD, considering the MRCG features of adjacent
frames and max pooling was applied on frequency axis. For SAD-
01, the sigmoid function was applied on the last fully connected
layer, and softmax function was applied on the last fully connected
layer for SAD-012.

3. SOUND EVENT DETECTION

The SED was performed independently, the results of SAD and
SED results were separately estimated and merged at the end.
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Figure 1: Multi-resolution cochleagram feature.

Figure 2: Convolutional recurrent neural network for sound activity
detection and sound event detection.

3.1. Data augmentation

Data augmentation is shared between SAD model and SED model.
We used two methods, pitch shifting and block mixing on mono-
phonic audio clip.

3.2. Feature extraction

For SED, log mel-spectrograms were used as input feature. The log
mel-spectrograms were extracted from total 7-channels audio sig-
nals; 4-channel input audio, harmonic and percussive components
by harmonic-percussive source separation [10], mono audio aver-
aged from 4-channel input audio.

3.3. Deep learning model

In SED, also the CRNN model was used in Fig. 2, only with dif-
ferent convolution block was used. The convolution block for SED
is shown in Fig. 3 (b). Inspiring by VGGNet [11] and Inception
V2 [12], 3 x 1 convolution filter was first performing and then 1 x 3

Figure 3: a) Convolution blocks for SAD and b) SED

convolution filter was performing on its output. And the last layer
of the convolution block, 1 x 1 convolution was performing for re-
ducing computational complexity and selecting an effective feature
maps.

3.4. Combining SAD and SED results and post-processing

To improve system performance, we estimated the SAD and SED
results respectively and combined them. First, we changed the SED
results to zero when the SAD-01 results were zero for combining
SAD-01 and SED. Second, for combining SAD-012 and SED, we
extracted as zero, one, and two results from SED results according
to the SAD results. Finally, median filter was applied to each class
with different filter lengths.

4. SOUND EVENT LOCALIZATION

Recently, deep learning based sound source localization shows bet-
ter performance than previous signal model-based such as multiple
signal classification (MUSIC) [13]. Motivated of earlier works, we
also use deep learning approach to estimate the DOA of the sound
source. Although SELDnet [1] adapted multi-task learning to lo-
calize and detect each sound event jointly, we separate the SEL
task from the SELD task to achieve better localization performance.
Then, we formulate the DOA estimation problem as a multi-label
classification for localizing multiple sound sources.

4.1. Feature extraction for SEL

Since the time-difference-of-arrival (TDOA) is one of the most
widely used spatial cues for localizing a sound source, we decide
to exploit the TDOA of all combinations of each microphone pair
for estimating azimuth and elevation angle. More specifically, we
calculate the generalized cross-correlation phase transform (GCC-
PHAT) [14], which is the generally used feature for estimating
TDOA between two microphones. Let Xi and Xj denote the spec-
trum of the i-th microphone and the j-th microphone. Then, GCC-
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CNN

Model

Figure 4: system overview for sound event localization

PHAT for the microphone pair iss calculated as follows:

φi,j(n, τ) =

K∑
k=1

Xi(k, n)Xj(k, n)

|Xi(k, n)| |Xj(k, n)|e
−2jπ fsk

K
τ (1)

where k, n, fs, and τ represent the frequency bin index, time frame
index, sampling rate, and lag respectively. The TAU Spatial Sound
Events 2019 dataset [15] was synthesized from estimated room
impulse response recorded by using Eigenmike1, which is a rigid
spherical microphone array with radius 42mm. Considering the
spacing between the microphones, We calculated the GCC-PHAT
by dividing the lag from -50 ms to 50 ms by 100 in considera-
tion of possible TDOA range. After calculating the GCC-PHAT for
each microphone pairs, we concatenate them into the 600 (100×6)
dimension vector, and adapt the min-max normalization for every
frame as below:

φ̄(n) =
φ(n)−min (φ(n))

max (φ(n))−min (φ(n))
(2)

where φ(n) is the GCC-PHAT vector. To consider context infor-
mation, we splice N adjacent frames back and forth, and we ex-
perimentally observed that the more splicing gradually decrease the
DOA error.

4.2. Model architecture

For localizing sound event, we use the CNN model, which is not
only widely used in image classification but also DOA estimation
[16, 17, 18]. The detailed structure of the CNN model is summa-
rized in Table 1. The model is designed to classify DOA angles
among the 324 (36× 9) classes.

4.3. Data augmentation for SEL

In the experiment stage, we observed that higher DOA error in over-
lapped frames where two sound sources are present at the same time
than the non-overlapped frame. Therefore, our augmentation strat-
egy is to make more overlapped frames, and it is quite simple and
effective. First, we randomly select two audio files in the train data
of each split and add two audio files at random time frame inter-
vals in the short-time Fourier transform (STFT) domain. Finally,
we collect actual overlapped frame among the added frames.

1https://mhacoustics.com/products

Table 1: Specification of the CNN model.
Layer Type Kernel Padding Stride Pooling Units

1
Conv2D 32@3*3 SAME - - -

Batch norm - - - - -
ReLU - - - - -

Maxpool - - 2*1 2*2 -

2
Conv2D 32@3*3 SAME - - -

Batch norm - - - - -
ReLU - - - - -

Maxpool - - 2*1 2*2 -

3
Conv2D 32@3*3 SAME - - -

Batch norm - - - - -
ReLU - - - - -

Maxpool - - 2*1 2*2 -

4
Conv2D 64@3*3 SAME - - -

Batch norm - - - - -
ReLU - - - - -

Maxpool - - 2*1 2*2 -

5
Conv2D 128@3*3 SAME - - -

Batch norm - - - - -
ReLU - - - - -

Maxpool - - 2*1 2*2 -

6
Conv2D 256@3*3 SAME - - -

Batch norm - - - - -
ReLU - - - - -

Maxpool - - 2*1 2*2 -

7
Conv2D 256@3*3 SAME - - -

Batch norm - - - - -
ReLU - - - - -

Maxpool - - 2*1 2*2 -

8
Conv2D 256@3*3 SAME - - -

Batch norm - - - - -
ReLU - - - - -

Maxpool - - 2*1 2*2 -

9
Flatten - - - - -
Dense - - - - 2048

Batch norm - - - - -
ReLU - - - - -

10 Dense - - - - 324
Sigmoid - - - - -

5. EXPERIMENTS AND RESULTS

5.1. Experimental setup

5.1.1. SAD

MRCG: MRCG features were extracted as shown as Fig. 1. This
process was performed on each of the 4-channel audio signals, so
total 480 x 4 dimension MRCG features were used.
Neural network configurations: The input sequence length was de-
termined as 128, and batch size for training was 16. The number
of cnn filter was 64 for every convolution layer, and max-pooling
size of each layer was 8, 5, and 4, respectively. For two RNN
layers, GRU sizes were 128 respectively. Finally, the number of
nodes were 256 for two fully connected layers. For regularization,
drop-out was applied to fully connected layers with drop rate 0.5.
We trained the Model with binary cross-entropy loss function using
Adam optimizer with default parameters.

5.1.2. SED

Log mel-spectrogram: We used log mel-spectrogram for SED. The
log mel-spectrograms were extracted from total 7-channels audio
signals; 4-channel input audio, harmonic and percussive compo-
nents by harmonic-percussive source separation (HPSS). For log
mel-spectrogram and HPSS, librosa which is a Python package was
used. Window length and hop length were 40 ms and 20 ms respec-
tively, and the number of mel filters was 240.
Neural network configurations: The input sequence length was de-
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termined as 128, and batch size for training was 16. The number
of CNN filter was 64 for every convolution layer, and max-pooling
size of each layer was 6, 5, and 4, respectively. For two RNN layers,
GRU sizes were 128 respectively. Finally, the number of nodes were
256 for two fully connected layers. For regularization, drop-out was
applied to fully connected layers with drop rate 0.5. We trained the
Model with binary cross-entropy loss function using Adam opti-
mizer with default parameters.
Median filter length: The median filter lengths for clearthroat,
cough, doorslam, drawer, keyboard, keysDrop, knock, laughter,
pageturn, phone and speech are 17, 19, 5, 17, 31, 5, 11, 25, 21,
37, and 27, respectively. These were determined based on the mean
and standard deviation of the sound length of each class.

5.1.3. SEL

To evaluate the localization performance only, we made the oracle
SED results for the development set. Afterward we overwrite the
estimates of the DOA from CNN model.
GCC-PHAT: We extract the GCC-PHAT feature vector every 20ms
frame, and the number of spliced frame, N , was set from 5 to 13.
Model hyper-parameters: Because of the overlapped frames, we
used the binary cross-entropy as a loss function, and Adam opti-
mization method with a batch size of 128 frames and a learning rate
of 0.001 was used to train the our CNN model.

5.2. Results

The proposed system was evaluated on both MIC (microphone ar-
ray) and FOA (first-order ambisonic) datasets [15]. Each dataset
consists of a pre-defined four cross-validation splits. There are four
metrics to evaluate sound event localization and detection. For the
SED, error rate (ER) and F-score is calculated in segments of one
second [19]. For the SEL, two frame-wise DOA metrics were used
to evaluate our localization performance: DOA error and frame re-
call described in [13].

The results of the integrated system with SAD-01 and with
SAD-012 are shown in table 2 and table 3, respectively. In case
of the integrated system with SAD-012, the system only achieved
higher frame recall performance than system with SAD-01.

Table 2: Final results of the integrated system with SAD-01 on de-
velopment dataset.

Dataset MIC FOA
Split 1 2 3 4 Aver. 1 2 3 4 Aver.
ER 0.17 0.27 0.19 0.30 0.23 0.22 0.31 0.22 0.28 0.26

F-score 89.6 83.5 89.2 82.5 86.2 87.6 82.2 87.7 83.2 85.1
Frame
recall 88.1 85.3 87.8 84.3 86.4 87.2 84.9 87.2 85.9 86.3

DOA error 3.70 3.61 3.88 3.28 3.62 9.43 9.84 9.78 9.10 9.55

6. CONCLUSION

In this paper, we proposed three-stage approach to localize and de-
tect sound event using deep learning. SAD and SED results were
estimated separately and combined for final SED results. For post-
processing, median filter was applied to each class with different fil-
ter lengths. Finally, azimuth and elevation angle is estimated using
the CNN model and integrated with the SED results.The model used

Table 3: Final results of integrated system with SAD-012 on devel-
opment dataset.

Dataset MIC FOA
Split 1 2 3 4 Aver. 1 2 3 4 Aver.
ER 0.22 0.35 0.22 0.30 0.28 0.25 0.25 0.23 0.28 0.25

F-score 87.3 79.9 87.9 81.9 84.2 85.8 84.1 87.0 83.1 85.0
Frame
recall 92.5 90.6 92.4 91.8 91.8 92.9 93.1 92.3 92.9 92.8

DOA error 4.17 4.26 4.11 3.65 4.05 11.0 10.3 10.7 10.3 10.6

in the final submission was the ensemble of the 4 models trained by
4 cross validation sets for each of the SAD, SED, and SEL models.
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