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ABSTRACT

In this work, we show a simultaneous sound event localization and
detection (SELD) system, with enhanced acoustic features, in which
we propose using the well-known Generalized Cross Correlation
(GCC) PATH algorithm, to augment the magnitude and phase regu-
lar Fourier spectra features at each frame. GCC has already been
used for some time to calculate the Time Difference of Arrival
(TDOA) in simultaneous audio signals, in moderately reverberent
environments, using classic signal processing techniques, and can
assist audio source localization in current deep learning machines.
The neural net architecture we used is a Convolutional Recurrent
Neural Network (CRNN), and is tested using the sound database
prepared for the Task 3 of the 2019 DCASE Challenge. Our pro-
posed system is able to achieve 20.4 of direction of arrival error,
86.4% frame recall, 87.1% F-score and 0.20 error rate detection in
testing samples.

Index Terms— GCC-PHAT, SELD, Polyphonic event detec-
tion, Sound source localization, CRNN, Sound event detection.

1. INTRODUCTION

Sound event detection (SED) or Audio Classification, refers to the
task of automatically recognizing the type of sound that is being
detected into some previously specified classes (like human voice,
vehicle moving, music, etc.). Meanwhile, Sound Source Localiza-
tion, or Sound Direction of Arrival (DOA) detection determines the
location of the sound in some coordinate system, and in this task we
use elevation and azimuth as its proxy. In most current published
work, these two tasks have been approached by separate problems.
However, there are many applications in which the simultaneous lo-
cation and identification of the sound can be very useful, like detec-
tion of an intended user, observation and understanding of human
activities, audio surveillance, autonomous agent navigation, among
others[1]. In most of this real-life applications, it is reasonable to
assume that sources sometimes will overlap in time, and detection
of this kind of audio events is referred in [1] as polyphonic SED.

1.1. Sound event detection

In current literature, Convolutional Neural Networks (CNNs) have
been proven to be very effective for image classification tasks. A
natural next step was to use CNNs or similar systems for audio

classification, providing audio features that resemble images, usu-
ally Fourier-based spectrograms, or similar representations. This
approach has also been met with relative success[2], and in re-
cent DCASE acoustic scene classification tasks, top submissions
are mostly CNN-based or related[3].

1.2. Sound source localization

Estimating the location of a sound source is definitely not a new en-
gineering problem. In classical signal-processing systems, source
location is calculated from the time difference of arrival (TDoA) of
the signal in each element of a microphone array. Then, an analytic,
regression formula, or a machine learning (ML) technique can be
used to produce the source location. For the first step, regular cross-
correlation can detect the time delay of two signals that contain
little auto-correlation (i.e. low reverberation, rich frequency con-
tent sounds). In that sense, generalized cross-correlation with phase
transform (GCC-PHAT) algorithm, developed in 1976 by Knapp
and Carter [4], can reduce the effects of the auto-correlation of a
signal, and make the system more robust to reverberation.

However, new machine learning techniques usually do not rely
on mapping TDoA to spatial location. Instead, the trend is to
directly relate some features of the audio signals to the source
location[5, 6, 7]. In our work, we aim to get the best of both worlds:
the tractability of a classical signal processing as feature, and the
high accuracy and noise robustness of neural nets.

2. AUDIO FEATURE EXTRACTION

2.1. Development data set

For all this work, training and testing was performed using the de-
velopment data set made available by the 2019 DCASE Challenge
for the task 3[8]. In order to identify the acoustic characteristics of
the recordings, the average spectrum of all the development audio
samples was calculated, and the result can be seen in Fig. 1. It can
be noticed that there is practically no audio information above the
15.8 kHz frequency, even when the sample frequency (48 kHz) al-
lows up to 24 kHz. Therefore, in all our feature extraction, we only
include data information of frequency bins of up to 15.8 kHz.

The inputs of the feature extraction routine are 4-channel,
48kHz sample frequency, audio recordings. A total of 400 record-
ings of roughly 60 seconds each are provided by the DCASE orga-
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Figure 1: Average magnitude spectrum of all the database audio
samples. Notice that there is practically no frequency content above
15.8 kHz.

nizing team. The signals are segmented in time frames, for which
a time hop of 20ms is used, producing 3000 samples per each 60-
second audio sample. The development data set consists of pre-
defined four cross-validation splits of 200 one-minute samples for
training, 100 samples for validation, and 100 for testing. The met-
rics shown in the results section refer to the average of all folds
models in their corresponding testing set. The recordings include
audio of 11 different classes, that can be located in azimuth angles
of -180 to 170 degrees in 10 intervals, and elevations of -40 to 40
in 10 intervals. In preparation for the training routine, all the au-
dio samples were padded or clipped to even out their run time to 60
seconds.

The first feature obtained from each time frame is the GCC-
PHAT vector from each signal combination. Usually, the vector ob-
tained from two signals from a microphone array shows a delta-like
response close to the vector center, in which the maximum value
of the vector has an offset from the center numerically equal to the
amount of delay samples between the two time domain signals[4].
Therefore, it is the middle part of the vector which contains most
of the useful information. We proposed to segment it, to generate
time matrices we call GCC-grams, as an analogous name to spec-
trograms. An scheme of this process can be seen in Fig. 2.

We propose GCC-grams as an additional input feature, in which
all the GCC-grams obtained from all channel combinations (6 in to-
tal, for the case of 4 input channels) are concatenated in one single
feature matrix in which all the time frames are aligned. Our hypoth-
esis is that this additional pre-processing of audio data can directly
improve DOA detection performance. However, in order to keep all
input information available for the system, we also feed the mag-
nitude and phase spectra per each channel, properly synchronized.
An scheme of this process can be seen in Fig. 3.

For the magnitude and phase spectrograms, the discrete Fourier
transform was applied to time frames of 2048 samples, using a
Hann window (these numbers were used also for the GCC vec-
tor calculation). From the positive frequencies of the output spec-
tra (1024 samples), only the samples corresponding to frequen-
cies below 15.8 kHz were extracted, which produced a vector of
1024× (15.8kHz/24kHz) = 672 samples per each time frame.

In order to keep the same dimensions, the concatenated GCC-
gram was fixed to have 672 samples wide too. Therefore, the middle
section size of each of the six individual GCC-grams was set up to
672/6 = 112 samples wide, which was large enough to contain the

maximum value of the GCC vector in all recordings. Therefore, per
each 1-minute recording, the feature extraction routine produces a
3-D tensor of 3000 time frames, by 672 frequency bins, by 9 com-
ponents: 1 concatenated GCC-gram, 4 phase spectrograms, and 4
magnitude spectrograms. As a final step, all this 2D matrices were
individually normalized.

3. PROPOSED SYSTEM

3.1. CRNN Architecture

The CRNN architecture we used is based directly in the work pro-
posed by S. Adavanne et al in [1], with some minimal modifica-
tions, as our approach was mainly focused on enhancing feature
extraction. This architecture is characterized by taking a sequence
of features in consecutive frames as input and predicting the sound
event classes that are active for each of the input frames along with
their respective spatial location (defined as a couple of output an-
gles, azimuth and elevation), producing the temporal activity and
DOA related information for each sound event class in parallel. An
illustration of the final architecture proposed can be seen in Fig. 4.

The input of the neural network is composed of multiple 2D
CNN layers. Each CNN layer has 64 filters of 3 × 3 × 9 receptive
fields with a ReLU activation function. After each CNN layer, the
outputs are normalized using batch normalization, and the dimen-
sions a reduced with average-pooling (MPi) along the frequency
axis. We preferred average-pooling over max-pooling on the hy-
pothesis that average pooling carries more information from the
whole kernel, in this case, the spectrograms and GCC-grams. The
output after the final CNN is of dimension T × 2× 64, in which T
is the number of input time frames.

Tho output is reshaped to a T frame sequence of 128 feature
vectors, fed to two GRU bidirectional layers of 128 nodes, followed
by three identical branches of fully connected (FC) layers in paral-
lel, one for SED, one for azimuth and other for elevation detection.
The first FC layer consists of 256 input nodes with linear activa-
tion, followed by a Dropout layer, a SELU layer, and and finally a
linear layer with 12 outputs, one per each audio class, plus an ad-
ditional ”garbage” class for the frames in which there is no audio
event present.

3.2. Training parameters

In each frame, one-hot encoding target values were used for each of
the active sound events in the event detection branch output. Since
sound events can be overlapping in time, it is possible to have multi-
ple ones at each time step. Similarly, for the azimuth and elevation
branches, a 12 element vector is output in which the active class
(according with the event detection output) contains the numeric
value of the angle in degrees, and the rest of the vector contains the
garbage value of -181. A multi-classification hinge (margin-based)
loss is used between the event detection predictions of our system
and the reference sound class activities, while a mean square error
(MSE) loss is used for both the azimuth and elevation outputs. We
did not performed any transformation to Cartesian coordinates.

After some hyper-parameter tuning, we trained our proposed
system with a weighted combination of loss functions by 150
epochs using Adam optimizer with batch size of 8 training sam-
ples, drop out rate of 0.5, and initial learning rate of 0.0001, using
a cosine annealing scheduler. Early stopping is used to control the
network from over-fitting to training split. The network was imple-
mented using Pytorch.
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Figure 2: Scheme of the process in which a GCC-gram is produced
from the audio signals.

Figure 3: Scheme of the complete contents of the audio features
extracted from the 4-channel signal.

4. RESULTS ON DCASE DEVELOPMENT DATA

As established in the DCASE Task 3 web page, four different met-
rics are taken onto account to assess the SELD system performance.
Two are directly related with event detection: F-score and error rate
(ER). The other two are related with DOA detection: DOA error and
frame recall[9]. It must be highlighted that an ideal SELD method
will have an error rate of 0, F-score of 100%, DOA error of 0 and
frame recall of 100%. Also, as suggested in the page, the four cross-
validation folds are to be treated as a single experiment, meaning
that metrics are calculated only after training and testing all folds.
The results are then compared with those from the baseline SELD
system proposed by S. Adavanne et al[1], and such comparison can
be seen in the next table:

Model ER F-score DOA error Fr. recall

Baseline (mic. array) 0.35 80.0% 30.8 84.0%
Our model 0.20 87.1% 20.4 86.4%

It should be noticed that our proposed system performs better
in all metrics than the baseline system, but the best improvements
are present in the error rate (-0.15) and DOA error (-10.4). This
performance improvement can be attributed in part to the additional
prepossessing of audio events provided by GCC-grams.

Figure 4: Overview of the architecture of the proposed sound event
localization and detection (SELD) system

5. CONCLUSIONS

In this work we describe a system for the simultaneous audio event
classification and location, based in the use of regular Fourier spec-
trograms and our proposed GCC-grams, in order to improve detec-
tion and localization performance over a previous baseline. Some
additional changes in the CRNN architecture are also included, with
the hypothesis of improved robustness over the baseline system.
However, the main differentiation of our approach is clearly on the
feature extraction side. The results obtained from the cross vali-
dation results show that our system performs better than the base-
line in all the metrics proposed by the DCASE Challenge coordina-
tion team, which suggests that the additional processing at the fea-
ture extraction stage we proposed can produce significant additional
benefits over an already properly functioning NN architecture.
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