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ABSTRACT

This work proposes a deep learning framework applied for Acous-
tic Scene Classification (ASC), targeting DCASE2019 task 1A. In
general, the front-end process shows a combination of three types of
spectrograms: Gammatone (GAM), log-Mel and Constant Q Trans-
form (CQT). The back-end classification presents a joined learning
model between CDNN and CRNN. Our experiments over the de-
velopment dataset of DCASE2019 challenge task 1A show a sig-
nificant improvement, increasing 11.2% compared to DCASE2019
baseline of 62.5%. The Kaggle reports the classification accuracy
of 74.6% when we train all development dataset.

Index Terms— Gammatone, log-Mel, Constant Q Transform
(CQT), Convolutional Neural Network (CNN), Recurrent Neural
Network (RNN)

1. INTRODUCTION

To deal with the Acoustic Scene Classification (ASC) task, recent
researches on front-end features can be separated into two main
groups. The first explores one kind of time-frequency feature such
as log-Mel filter, and makes effort to explore different aspects of
that feature. For instance, they are multi-dimensional log-Mel
spectrogram [1], wavelet spectrogram [2], auditory statistics of
a cochlear filter output [3], or a kind of i-vector extraction from
the traditional features like Mel-Frequency Cepstral Coefficients
(MFCC) [4]. The second category attempts to combine multiple
spectrograms, and that can be seen as log-Mel filter and MFCC [5],
MFCC, Gammatone filter and log-Mel [6], or even a wide range of
features such as Perceptual Linear Prediction (PLP), MFCC, Power
Nomalized Cepstral Coefficients (PNCC), Robust Compressive
Gamma-chirp filter-bank Cepstral Coefficients (RCGCC) and
Subspace Projection Cepstral Coefficients (SPPCC) [7]. Inspiration
from the second approach that different time-frequency features
have distinct attribution, we therefore propose an effective com-
bination of three spectrograms, gammatone (GAM) [8], log-Mel
spectrogram [9] and Constant-Q Transform (CQT) [9].

Convolutional Deep Neural Network (CDNN), which was
early approached for machine hearing tasks [10, 11], has become
the most effective classification for ASC. In fact, most proposed
DCASE2018 models show various architectures based CDNN such
as [12, 13, 14, 15, 16, 17]. Additionally, Convolutional-Recurent
Neural Network (CRNN), which has become a standard model
applied for acoustic event detection, was also applied over LITIS
dataset [18] or DCASE2017 [19], proving effective results. We,
therefore, propose a joined learning model that combines both

CDNN and CRNN.

In order to enhance the classification accuracy, this work also
applies a data augmentation technique called mixup data, which
comes from research on image classification [20]. Different from
other augmentations such as added background noise [21], fre-
quency shifting [22], or GAN network [19], this technique gen-
erates a new data by mixing two original data with different rate.

2. SYSTEM ARCHITECTURE

Figure 1: General System Architecture

In general, the proposed framework architecture is presented as
Fig. 1. Firstly, the audio file is transferred into a two-dimensional
spectrogram. In this work, we explore three types of spectro-
grams (GAM, log-Mel and CQT) and propose a fusion to com-
bine all of them. Next, the entire spectrogram is split into patches
with a frequency and time resolution of 128 and 128, respectively.
Before feeding patches into the back-end classification, we ap-
ply mixup data augmentation technique to generate new patches,
namely mixup data, which are mixed with original patches. For
the back-end classifier, two parallel learning blocks, namely CDNN
and CRNN, learn different attribution of the spectrogram and are
concatenated before feeding into a Pre-DNN block. When the pre-
trained process finishes, data concatenation between CDNN and
CRNN output are extracted and fed into Pos-DNN that considered
as the post-train process. The post-trained result is reported in this
work.

2.1. Front-End Feature Extraction

As mentioned above, this work applies GAM [8], log-Mel [9] and
CQT [9] to generate spectrograms from audio segments and Table
1 shows how we set parameters for generating spectrograms. Since
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Figure 2: Back-end Classification Architecture

Figure 3: CNN-T or CNN-G architecture

we aim at generating the same size of spectrograms regarding three
types of transformation, the entire spectrogram shows the frequency
and time resolution of 128 and 1870, respectively. Thus, every en-
tire spectrogram is split into 14 patches with the size of 128× 128.

2.2. Back-end Classification

The general architecture of back-end classification mentioned in
Fig. 1 with the pre-trained and post-trained process is described
as detailed in Fig. 2. First, three different spectrogram features with
the size of 128 × 128 are fed into convolutional blocks, namely

Table 1: Setting Parameters of Spectrogram.

Parameters Values

Window size 1920
Hop size 256

Fast Fourier Number 4096
Frequency Min 10

Frequency resolution 128

Table 2: CNN-T/G Output Shape [batch sizexFrequecy Resolu-
tionxTime ResolutionxChannel Resolution]

Layer CNN-G CNN-T

Input n×128×128×1 n×128×128×1
Single Conv n×64×64×32 n×64×128×32
Single Conv n×32×32×64 n×32×128×64

Doublue Conv n×16×16×128 n×16×128×128
Double Conv n×256 n×1×128×256

CNN-G and CNN-T, which belongs in CDNN and CRNN branches,
respectively. The CDNN network that combines CNN-G and fully-
connected layers shows a conventional CNN architecture. The role
of three CNN-G is to transfer spectrogram features as patches into
high-level features as 256-dimensional vectors before adding to-
gether. Thus, additional result goes through fully-connected lay-
ers. The CNN-T block of the CRNN network helps to transfer a
spectrogram feature to a time-sequential feature that is fed into bi-
directional RNN. Both CNN-T and CNN-G share a similar general
architecture as described in Fig. 3, but the CNN-T pooling layers
are different from that of CNN-G. In particular, with the input patch
size of 128×128 mentioned above, the output of every convolution
layer, namely single conv or double conv in Fig. 3, are different and
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described in Table 2. If we consider the shape of the input feature
is [batch size, frequency resolution: time resolution: channel num-
ber], CNN-G scales down both the time and frequency resolution
with setting pooling at [1:2:2:1] over single or double convolutional
layer. At the final layer of CNN-G block, the global-mean pooling
is applied to scale into n× 256 (noting that n is the batch size and
256 is the number of kernel at the final double conv). However,
only the frequency dimension is scaled with a pooling layer setting
of [1:2:1:1] regarding CNN-T, keeping the time resolution constant.
At the final layer of CNN-T, the global-mean pooling layer is used
over the frequency dimension, creating a high-level feature with the
shape of n×1×128×256. It is then reshaped to n×128×256 that is
considered as a sequence of 256-dimensional vectors, feeding into
bi-directional RNN. The bi-directional RNN is configured by GRU
cells with a dynamic sequence length setting and 128 hidden states.
Thus, the output of bi-directional RNN is sent to a global-mean
pooling layer where the time dimension is averaged, creating a 256-
dimensional vector that is a same shape as the output of CDNN net-
work. Eventually, outputs of CRNN and CDNN are concatenated
and goes through three fully-connected layers and the final Soft-
max layer is used to classify. As regards the post-trained process
namely Pos-DNN, more fully-connected layers are used to deeply
learn the extracted high-level feature from the pre-trained process.
Both the pre-trained and the post-trained process are trained at a
patch-size level, using softmax layer at the final layer, built in the
Tensorflow framework, using the Adam method [23] for learning
rate optimisation. Batch size and learning rate are set to 100 and
0.0001 respectively.

2.3. Data Augmentation

In order to increase data variation, various types of data augmenta-
tion are explored in the ASC task. This work also applies a kind of
data augmentation, called mixup, to enhance the performance. Let’s
consider original data as X1, X2 and expected lables as Y1, Y2, we
generate mixup data as follows

Xmp1 = X1 ∗ λ+X2 ∗ (1− λ) (1)

Xmp2 = X1 ∗ (1− λ) +X2 ∗ λ (2)

Ymp = Y1 ∗ λ+ Y2 ∗ (1− λ) (3)

Ymp2 = Y1 ∗ (1− λ) + Y2 ∗ λ (4)

with λ ∈ U(0, 1) is random coefficient.

We feed both original data and generated mixup data into the
back-end classification (both the pre-trained and the post-trained
process), and considerably extending the training time of the model.

3. EXPERIMENTS AND RESULTS

This work follows the instruction of DCASE2019 challenge over
task 1A. Therefore, the development set is separated into subsets,
namely training set and testing set. Table 3 presents the experiment
results over testing set on the task 1A [24] and it shows that the ac-
curacy over every class are improved compared to the DCASE2019
baseline. Submission result over Leaderboard set on Kaggle reports
the accuracy of 74.7%, improving 12.2% compared to DCASE2019
baseline of 62.5%.

Table 3: Experiment Results Over Task 1A

Class DCASE2019 baseline Our Method

Airport 48.4 58.9
Bus 62.3 86.3

Metro 65.1 73.9
Metro Station 54.5 68.0

Park 83.1 87.0
Public Square 40.7 52.7
Shopping Mall 59.4 71.4

Street Pedestrian 60.9 74.4
Street Traffic 86.7 90.3

Tram 64.0 74.3
Overall 62.5 73.7

4. CONCLUSION

In this work, we propose a learning model that combines three input
spectrograms and explore the fusion between CRNN and CDNN for
classification. The experiment results over DCASE2019 develop-
ment dataset targeting task 1A review that our method are effective
to improve the classification accuracy over every class. The atten-
tion layers as our future work could be added into both CDNN and
CRNN since it enables us to improve performance.
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