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ABSTRACT

This report details the methods used in the development set of
DCASE 2019 Task 3, and the results of the investigations. Data
augmentation mixup was used in an attempt to train the model for
greater generalization. The Kkernel size of the pooling layers were
also modified to a more intuitive size. In addition, different kernel
sizes of the convolutional layers were also investigated and results
are reported. Our best model achieved an F-score of 91.9% and
a DOA error of 4.588 “on the development set, which showed an
improvement of 10% and about 25°, respectively compared to the
baseline system.

Index Terms— sound localization, event detection, convolu-
tional recurrent neural network, mixup, regression

1. INTRODUCTION

Sound event localization and detection (SELD) is a challenging and
well-researched topic in the area of acoustic signal processing. Sig-
nal processing algorithms have been traditionally employed to ad-
dress this challenging task. However, the performance achieved by
such methods are still limited under practical conditions of room
reverberation and low signal-to-noise ratio (SNR). To tackle these
limitations, novel approaches using deep learning have been pro-
posed recently. The technique used in [1] is one such deep learning-
based approach and has been set as the baseline model in the
DCASE2019 Task 3 challenge - Sound Event Localization & De-
tection.

An improvement in the overall performance of [1] was demon-
strated in [2]. Both [1, 2] involved the use of convolutional neural
network (CNN) to learn the audio spectral information followed by
the use of recurrent neural network (RNN) to learn the temporal
information. A two-stage training approach was introduced in [2],
where the training of the network is split into two branches, i.e.,
the sound event detection (SED) branch and the direction-of-arrival
(DOA) branch. For both branches, the system is trained using a con-
volutional recurrent neural network (CRNN). However, for training
the DOA branch, the trained CNN weights obtained from the SED
branch was transferred to the CNN layers in the DOA branch for
further training.

In [1], short-time Fourier transform (STFT) representation of
the microphone signals were used as input features to the CRNN.

*The work was done when Jee was an intern at Panasonic R&D Center
Singapore.

However, the introduction of log-mel spectrogram and generalized
cross-correlation phase transforms (GCC-PHATS) as audio features
in [2], showed an improvement across all evaluation metrics com-
pared to [1]. In this technical report, we show the results we ob-
tained from exploring various techniques aimed to improve the per-
formance in [2] such as,

1. Use of Bark spectrogram as input audio feature
2. Use of data augmentation technique

3. CNN layer changes

4. Pooling layer changes .

The rest of the report is organized as follows. In Section 2, we
describe our CRNN architecture and proposed methods and model-
tuning parameters in detail. In Section 3, we compare and evaluate
our results with [2]. Finally, we put forth possible areas for explo-
ration in Section 4 and conclusions are provided in Section 5.

2. METHODOLOGY

For fair comparison and evaluation, the source code we developed
is an extension of the code provided by [2] on GitHub [3]. The time
domain microphone signals were first down-sampled to 32 kHz. To
obtain the 2D log-mel spectrogram of the time domain signals, we
used a STFT parameterized by FFT length of 1024 samples, hop
length of 10 ms and Hann window. To convert the STFT represen-
tation to mel scale, we used 96 mel bins.

2.1. CRNN Architecture

Our main network architecture , named TS-C2RNN, shown in Fig-
ure 1 is a modification of the CRNN architecture proposed in [2].
Our modified architecture consists of 4 CNN blocks and 2 RNN
layers stacked together. It should be noted that TS-C2RNN also
employed the same two-stage training strategy in [2]. The output of
the Interpolate layer contains 11 class scores, azimuth and elevation
values corresponding to each 7" time frames, where 7" varies from
clip to clip (I" = 6000 for a 60 s clip using the above STFT pa-
rameters). The Interpolate layer ensures that the final number of the
time frames is approximately equal to the original number of time
frames of the input clip. This is necessary due to the presence of
pooling layers after each CNN block.

Techniques mentioned in Section 1 was applied on the TS-
C2RNN to investigate the effect they have on the final results. The
following subsections further describe such techniques.
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Figure 1: Base architecture TS-C2RNN. Each CNN block contains
three Conv2D layers followed by 2x2 average pooling. Each CNN
layer is followed by batch normalization and ReLU activation. con-
vBlockl1 receives the input features. Architecture is drawn with [4].
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Figure 2: Beta distribution with o, 8 = 0.2

2.2. Bark spectrogram

Previous works used mel spectrograms as input features. However,
Bark spectrograms are also a type of audio representation based on
psychoacoustic models. As such, we are interested to explore if
there is any positive effect of using Bark spectrograms over mel
spectrograms. FFT length, number of bins, sampling rate and GCC-
PHATS as input features remained unchanged.

There are three different equations to convert frequency f to
Bark based on different experiments. We used the latest conversion
equation [5] which is given by,

Bark = 65inh_1$ . (1

2.3. mixup as data augmentation

Ideally, the probability distribution P is known so that the expected
risk R can be minimized over P as such,

R(f) = / 0(f (@), 9)dP(z,y),

where f(x) is a function that describes the relationship between in-
put vector x and target vector y, £ is the loss function that penalizes
the difference between the output of f(z) and target y.

While P is unknown is most practical cases, it can be approx-
imated. There are two such approximations raised in [6] namely
empirical risk minimization [7) and vicinal risk minimization [8].

While the vicinal virtual input-target pairs are generated by ad-
dition of Gaussian noise in [8], Zhang et al. [6] proposed the gener-
ation of virtual input and target pairs as such,
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Figure 3: The modified architecture TS-C2RNN-v2 with the new
kernel sizes and without interpolation layer.

X:)\xwl—f—(l—)\)xm,

Y=Axyi+(1—-X) Xy, @
where )\ is a weight drawn from the beta distribution with parame-
ters a,, B = 0.2 and z1, z2, Y1 and ys are two pairs of input-target
pairs drawn randomly from the dataset. The parameters v and 3
are chosen such that the probability density is denser in the domain
0 < A< 0.1and0.9 < A < 1.0 which can be seen in Figure 2.
The average of the loss function can then be minimized over this
probability distribution approximation.

2.4. CNN & pooling kernel size changes

Kernel sizes for the pooling layers were changed from 2 x 2 to 2 x 1
thereby pooling the feature maps in the frequency dimension only.
Performing 2 X 2 pooling across time and frequency domain will re-
duce the information for the next CNN layer. To minimize the loss
of information in the temporal dimension, which we deemed to be
important, we did not perform pooling across the time dimension.
As a consequence, when this method was adopted, the Interpola-
tion layer in TS-C2RNN was removed. The modified architecture
termed TS-C2RNN-v2 with the new kernel sizes and without in-
terpolation layer is shown in Figure 3. We also explored another
modification where the CNN kernel size were changed from 3 x 3
tod x 2.

3. RESULTS

We used the dataset TAU Spatial Sound Events 2019 - Micro-
phone provided by the challenge organizers for all of our experi-
ments. The network is trained using the 4 predefined folds of the
challenge and the final results shown in the tables are the overall
results from the test data of all 4 folds in the development set.

The names in Table 1 refer to the trained model of a particular
architecture. The names stand for the following,

e Baseline Model of the benchmark model released by
DCASE2019 Task 3 organizers. Results of Baseline displayed
are as reported by the authors in [1].

e SELDNet Model with the same architecture network in Base-
line, but input features are log-mel spectrograms and GCC-
PHATs. Results of SELDNet displayed in Table 1 were as
reported by authors in [2].

o Two-Stage (TS) Model used in [2]. Results reported here were
reproduced and is comparable to [2]. Improvements of about
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no mixup with mixup
ER  F-score DOA(°) FR ER  F-score DOA(°) FR
Baseline 0.350  0.800 30.8 0.840 - - - -
SELDNet 0.213 0.879 11.3 0.847 - - - -
Two-Stage (TS) 0.166  0.908 9.619 0.863 || 0.194  0.888 8.901 0.839
TS-2RNN 0.168 0.907 8.942 0.865 || 0.184  0.896 7.769 0.855
TS-CRNN 0.186  0.897 9.450 0.857 || 0.200  0.888 7.866 0.841
TS-C2RNN 0.174  0.901 8.881 0.862 || 0.176  0.903 7.236 0.856

Table 1: Results of all runs using two-stage training strategy. All TS results reported here are calculated after training and testing all folds

predefined in the development set.

Investigation ER F-score DOA(°) FR

Bark spectrograms 0.193 0.889 9.021 0.847
Leaky ReLU 0.190  0.895 7.326 0.848
Maxpooling 0.251 0.868 5.516 0.853
Maxpooling + CNN kernel size  0.240  0.870 5.231 0.857
TS-C2RNN-v2 0.149  0.919 4.588 0.896

Table 2: Various results from the investigations into the changes proposed. All of these were ran with mixup data augmentation through

TS-C2RNN.
mixup on DOA branch only
ER  F-score DOA(°) FR
Two-Stage  0.175  0.903 8.056 0.861

TS-C2RNN  0.171 0.903 7.486 0.861

Table 3: Results from using mixup in DOA branch training only.

10% in F-score and 20° in DOA error from Baseline were
obtained.

e TS-2RNN Same architecture as Two-Stage except for the sin-
gle GRU layer being changed to a stacked two-layered GRU.

o TS-C2RNN Base architecture as illustrated in Figure 1.

e TS-CRNN Same architecture as TS-C2RNN except only 1
GRU layer used as the RNN.

The names in Table 2 refer to the various experiments per-
formed on TS-C2RNN. They are denoted as follows,

e Bark spectrograms Change of input features from log-mel
spectrograms and GCC-PHATSs to Bark spectrograms and
GCC-PHATs.

e Leaky ReLU Use of leaky ReLU instead of ReLU as activation
function in the CNN layers.

e Maxpooling Use of max pooling layers instead of average
pooling with kernel size 2 x 1.

e Maxpooling + CNN Kernel size Use of max pooling layers
instead of average pooling layers with kernel size 2 x 1. In
addition, the kernel size for the CNN layers were changed from
3x3to2 x 4.

e TS-C2RNN-v2 Changing of average pooling kernel size from
2 x 2to 2 x 1. This is the modified architecture shown in
Figure 3.

3.1. Bark spectrogram as input

Bark spectrograms as input features did not give a better result com-
pared to log-mel spectrograms. The bandwidth in the mel scale is
smaller than the Bark scale at higher frequencies giving the mel
scale better resolution than the Bark scale at those frequencies.
From this result, we may conclude that the higher frequencies play
a major role in the SELD task and that frequency resolution plays a
similar role as well.

3.2. Changing activation function to Leaky ReLU

By changing the activation function from ReLU to Leaky ReL U, it
ensures that the function will not be given a zero value when it is
negative, which can lead to dead neurons and the model not being
able to learn. However, upon investigation, we notice that the choice
of ReLU as an activation function seemed to work better for this
task.

3.3. With and without mixup

From the results of Two-Stage in Table 1, we saw that the F-score
decreased while the DOA error improved after applying mixup.
From this, we proposed a new training strategy in an attempt to
obtain improved results in both SED and DOA branches. This is
done by applying mixup data augmentation technique only on the
DOA branch during training.

Comparing between the results of Two-Stage and TS-C2RNN
in Table 1 and 3, an improvement could be seen across all four eval-
uation metrics for Two-Stage. In contrast for TS-C2RNN, only
three metrics showed an improvement while DOA error increased.
Training for DOA branch is built upon the trained weights of the
SED branch. For results in the DOA branch to improve, SED re-
sults are also essential. Although mixup appear to decrease the score
for SED predictions, its effect on the SED branch, while affecting
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it negatively, appears to have a positive result on the DOA branch
after the knowledge is transferred to the DOA branch.

The negative effects of mixup on the SED branch appeared to
be suppressed by increasing the number of layers. This can be seen
from the F-score converging to 0.903 in the two scenarios of mixup
applications in Table 1 and 3. The DOA error could be improved
further by learning from the trained weights of a mixup-applied SED
branch instead of a non-mixup-applied SED branch although that
would adversely affect the results of SED predictions. Thus, a bal-
ance must be found in the use of mixup, depending on the use case
and the allowance for error in SED and DOA predictions.

3.4. Changes to the pooling layers

The change of pooling type from average pooling to maxpooling
shows a drop in the SED evaluations compared to TS-C2RNN but
an improvement in the DOA evaluations. However, TS-C2RNN-v2
which uses average pooling kernel size of 2 X 1 without interpo-
lation shows the best improvements with the best score across all
evaluation metrics. For the SED evaluation metrics, TS-C2RNN-
v2 achieved an error rate of 0.149 and an F-score of 91.9%. For
the DOA evaluation metrics, it achieved a DOA error of 4.588 °and
frame recall of 0.896. The improvement by not pooling across the
temporal dimension is clear, as can be seen in both the max and
average pooling cases. By not pooling across the time domain, im-
portant information is retained for the next layer.

4. FUTURE WORKS

For future studies, the changing of parameters « and 3 in mixup can
be investigated. The parameters were so chosen so as not to create
too many vastly different virtual input-target pairs. There might be
a beneficial improvement if the A is less heavily weighted to one
side of the input-target pair.

Another possible branch for investigation is the parameters used
for extracting features such as sampling rate and number of mel bins
used. The audio could be sampled at a frequency of 8 kHz since
there is not much audible information located in the high frequency
domain. Instead of resampling, the use of a low-pass filter could
also be used to remove audio in the higher frequency. Increasing
the number of mel bins could also lead to higher SED score.

A preprocessing technique that had not be tried and could yield
a slight improve in the results is the use of the pre-emphasis fil-
ter. Other scales beside the Bark and mel scale could also be tried
such as the equivalent rectangular bandwidth (ERB) and gamma-
tone scale.

5. CONCLUSION

In DCASE2019 task 3 challenge, we conducted various experi-
ments such as the use of a data augmentation technique mixup,
the use of a different input feature (Bark spectrogram), kernel size
changes to the CNN layers as well as pooling layers and the employ-
ment of different types of pooling layer. From the evaluation met-
rics, we observed that the best result is achieved by TS-C2RNN-v2
which uses a 2 x 1 pooling kernel size. Our proposed TS-C2RNN-
v2 achieved an improvement of about 10% and 25° in the F-score
and DOA error, respectively over the baseline system.
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