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ABSTRACT
This report describes the solution to Task 1B of the
DCASE 2019 challenge proposed by Samsung R&D In-
stitute Poland. Primary focus of the system for task 1B
was a novel technique designed to address issues with
learning from microphones with different frequency re-
sponses in settings with limited examples for the targeted
secondary devices. This technique is independent from
the architecture of the predictive model and requires just
a few examples to become effective.

Index Terms— spectrum correction, multi-device,
calibration, frequency response, convolutional neural
network

1. INTRODUCTION

Task 1B of the DCASE 2019 challenge [1] extends task
1A with mismatched recording devices. This task has
its own dedicated dataset called “TAU Urban Acoustic
Scenes 2019 Mobile” [2]. The goal is to create a model
capable of predicting acoustic scenes using audio record-
ings from low quality devices. Additionally the dataset
contains a fair amount of examples from a high quality
device (referred to as A), but only a limited number from
the targeted low quality devices (referred to as B and C).

2. SPECTRUM CORRECTION

The crucial part of this submission was a new technique
designed to account for different frequency responses of
the devices in the dataset. The procedure is very straight
forward. The version used in this submission requires
aligned (or at least significantly overlapping) recordings
from the same moment in time. Correction is applied to
the Short Time Fourier Transform of the audio recording

which means that audio can be inverted back to wave-
form after the correction has been applied or directly
transformed into a spectrogram.

Spectrum correction is implemented in two steps.
First, the correction coefficients are computed from the
spectrum of n aligned pairs of recordings. Then all the
recordings are transformed using the computed coeffi-
cients. As each coefficient is essentially an average, n
can be quite small (even 30 appeared to be sufficient).

Computing the coefficients requires choosing a ref-
erence device, for example device A. Correction coeffi-
cients for device X are computed by dividing the fre-
quency spectrum of a recording from the reference de-
vice by the spectrum of an aligned recording from the
device X . Coefficients are averaged over n such pairs.
This results in one coefficient per frequency bin.

Correction is applied by multiplying Short Time
Fourier Transform of the signal with the correction co-
efficients on the frequency axis for each point in time.
If correctly implemented, spectra after correction should
look alike for all the devices.

Note that the reference device can be virtual. For
example, in this submission the average spectrum of de-
vices B and C was used as the reference. This was mo-
tivated by the fact that in the evaluation dataset source
devices were not indicated and a separate neural network
was used to reconstruct them with 99.9% accuracy. Us-
ing the virtual reference device minimised the error from
the unlikely misclassification of the source device for the
given recording.

If warranted by the results of this competition this
technique and its variants will be described in detail and
analysed further in a dedicated article.
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3. ARCHITECTURES

Two architectures were used for this submission. Both
were simple fully convolutional neural networks. One
of them was just a slightly larger version of the other.
Dropout was not applied. Convolutional layers used
ReLU activation and BatchNormalization [3].

Table 1: Architecture of the smaller network (basic1).
layer outputs kernel stride

Conv2D+ReLU+BN 16 3 1
Conv2D+ReLU+BN 32 3 2
Conv2D+ReLU+BN 32 3 1
Conv2D+ReLU+BN 64 3 2
Conv2D+ReLU+BN 64 3 1

AveragePooling 64 - -
Dense 10 - -

Table 2: Architecture of the larger network (basic2).

layer outputs kernel stride

Conv2D+ReLU+BN 16 3 1
Conv2D+ReLU+BN 32 3 2
Conv2D+ReLU+BN 32 3 1
Conv2D+ReLU+BN 64 3 2
Conv2D+ReLU+BN 64 3 1
Conv2D+ReLU+BN 128 3 2
Conv2D+ReLU+BN 128 3 1

AveragePooling 128 - -
Dense 10 - -

4. TRAINING

Models were trained using Adadelta [4] until conver-
gence. Learning rate was reduced by half if accuracy did
not improve by at least 10−3 for 16 epochs starting at
0.5. Loss function was the focal loss [5] [6] with power
of 1 and no class weights. Additionally L2 regularization
was added with weight of 10−5. Batch size was set to 64.

The input to the neural network was a single log-
scaled mel-spectrogram. Every audio clip was first trans-
formed using STFT to frequency domain with 2048 fre-
quency bins and 512 hop-length and then reduced to 256
mel-bins.

In training set 30% of examples were created us-
ing mixup augmentation [7] with α = 0.2. Following
SpecAugment [8], blocks of time were randomly zeroed
out with maximum width of 80 and random frequency

bands were zeroed out with maximum height of 27. Max-
imum width of time warping was 40, but remained un-
used in all but four out of all the ensembled networks.

Frequency bins of the resulting spectrograms were
standardized using mean and standard deviation com-
puted on the appropriate training set (separately for each
of the bins).

5. RESULTS

Systems described in section 6 used the entire develop-
ment dataset, either during training or calibration. Be-
cause of this, it was impossible to report results on the
official train-test split. Instead table 3 shows results for a
single neural networks trained in various configurations
using the official test-train split. Every configuration was
tested on both architectures. Any configuration that used
spectrum correction outperformed its counterpart that did
not. Figure 1 shows this more clearly.

Table 3: Accuracy on the development dataset for both
architectures (for device A and devices B&C separately)
with and without augmentation, normalization and spec-
trum correction.
augmentation Yes Yes Yes Yes - - - -
normalization Yes Yes - - Yes Yes - -

correction Yes - Yes - Yes - Yes -

(A) basic1 72% 73% 70% 72% 71% 71% 68% 69%
(B&C) basic1 70% 58% 67% 56% 67% 59% 64% 54%

(A) basic2 71% 72% 68% 71% 72% 70% 69% 70%
(B&C) basic2 68% 58% 64% 55% 64% 58% 64% 54%

6. SUBMITTED SYSTEMS

The four submitted systems were all ensembles, each cre-
ated in a slightly different way. The simplest one was cre-
ated using soft-voting and models trained on all develop-
ment dataset examples. Two systems were created using
calibrated soft-voting. Calibration for each of the trained
models was done on a randomly created validation split
(different split per model), using isotonic regression for
each class. Fourth submission used soft-voting and com-
bined models from all the other systems. Each system
was based on networks with best accuracy of at least
70%. Most of the selected systems were using basic1
architecture.

• Kosmider SRPOL task1b 1 Calibrated soft-voting
on random split #1 using 36 models which achived
74.8% on the public and 73.8% on private leader-
board.
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Figure 1: Accuracy for devices B&C on the development dataset for both architectures in various configurations.

58%58%

68%70%

55%56%

64%
67%

58%59%
64%

67%

54%54%

64%64%

0%

20%

40%

60%

augmentation 
+ normalization

augmentation only normalization only neither

variant

ac
cu

ra
cy

model

basic1 with correction

basic2 with correction

basic1 without correction

basic2 without correction

• Kosmider SRPOL task1b 2 All models soft-voting
using 124 models which achived 74% on the public
and 76% on the private leaderboard.

• Kosmider SRPOL task1b 3 Calibrated soft-voting
on random dataset split #2 using 31 models.

• Kosmider SRPOL task1b 4 Soft-voting using 46
models trained on the entire development dataset.

7. CONCLUSION

Spectrum correction appears to be a very effective
method to combat mismatched frequency responses. It
enables training of cross device predictive models and
requires a modest number of examples to become effec-
tive. At the same time, accuracy for devices with domi-
nating number of examples doesn’t appear to be dimin-
ished. Applying it to a very simple model, resulted in an
improvement in accuracy of over 20% relative to the base
model. Ensembling and dataset augmentation further im-
proved the results. While a single raw neural network
reached only around 54%, the submitted system achieved
76% on the private leaderboard.
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[7] H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-
Paz, “mixup: Beyond empirical risk minimization,”
CoRR, vol. abs/1710.09412, 2017. [Online]. Avail-
able: http://arxiv.org/abs/1710.09412

[8] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph,
E. D. Cubuk, and Q. V. Le, “Specaugment: A sim-
ple data augmentation method for automatic speech
recognition,” arXiv preprint arXiv:1904.08779,
2019.


