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ABSTRACT 

This paper describes our contribution to the task of sound event 

localization and detection (SELD) using first-order ambisonic 

signals at the Detection and Classification of Acoustic Scenes 

and Events (DCASE) Challenge 2019. Our approach is based on 

arborescent convolutional recurrent neural networks with the 

aim to achieve joint localization and detection of overlapping 

acoustic events. Three submitted systems can be briefly summa-

rized as follows. System 1 splits the neural network into two 

branches associated with localization and detection tasks. This 

splitting is performed directly after the first convolutional layer. 

System 2 utilizes depthwise separable convolutions in order to 

exploit interchannel dependencies whilst substantially reducing 

the model complexity. System 3 exhibits a tree-like architecture 

in which relations between the channels for phase and magnitude 

are exploited independently in two branches, and they are con-

catenated before the recurrent layers. Finally, System 4 is based 

on score fusion of the first two systems. 

 

Index Terms—acoustic event detection, source localization, 

convolutional recurrent networks, DCASE2019 

1. INTRODUCTION 

Sound event detection (SED) is one of the most important tasks 

in current audio research. Automatization of the process of de-

tecting and classifying signals present in an acoustic environment 

is of interest in numerous applications. Robots can utilize envi-

ronmental information for improved behavior [1], surveillance 

systems can be significantly enhanced by detecting audio associ-

ated with hazardous events [2]. Multimedia annotation and crim-

inology analyses can be accelerated by automatic sound event 

recognition [3]. Many of these practical applications would bene-

fit from obtaining additional information about the location of the 

detected sound event. Therefore combining sound event detection 

and localization (SELD) tasks is a natural next step in the field of 

machine learning driven audio research. In this technical report 

we describe our contribution to the SELD task provided by the 

DCASE Challenge 2019 organizers [4]. Our method is based on 

convolutional recurrent neural networks (CRNNs) and utilize 

first-order ambisonic recordings. 

Figure 1: Overall architecture of both Lambda and LambdaDep. 

2. MODELS 

Similarly to [5], we use the Short-Time Fourier Transform 

(STFT) to extract magnitude and phase information, respectively 

for each of the four ambisonic channels, resulting altogether in 8 

feature maps. These spectrograms and phasegrams are obtained 

using a 20ms long Hamming window for framing with the DFT 

length of N. Depending on the model, these channels are pro-

cessed by the convolutional layers in different ways. 
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System 1 and System 2 share the same model structure 

depicted in Figure 1. In both cases we utilize a CRNN architec-

ture, which consists of three convolutional layers (CNN), two 

recurrent layers (RNN) and two fully connected layers (FC). In 

System 1 (called Lambda) spectrograms and phasegrams used as 

eight separate channels are fed to the standard 2D convolutional 

layers. Each CNN block produces feature maps utilizing a 3x3 

kernel per channel, whereas the outputs are processed using batch 

normalization and rectified linear  unit (ReLU) activations. The 

dimensionality of the feature maps is being reduced using max-

pooling (MPi) along the frequency axis, with the sequence length 

T left unchanged. In order to learn strong task-dependent features, 

the network is split into two branches right after the first layer. 

While the first branch is responsible for the SED task, the second 

performs multi-output regression to obtain directions-of-arrival 

(DOAs). While the first convolutional block uses P filters, the 

following layers consist of P/2 filters to keep the model complex-

ity fairly similar.  

In both branches, the outputs of convolutional blocks 

are fed into the RNN layers to learn additional temporal context 

information. In order to utilize both past and future information, 

we use bi-directional gated recurrent units (GRU), each consist-

ing of Q nodes, followed by tanh activation functions. Finally, 

the model outputs in both branches are produced by fully con-

nected layers. The first FC layer contains R neurons with no 

specific activation function (i.e. linear). To obtain probability 

values for each of the detected classes, the last layer in the SED 

branch utilizes C nodes, followed by a sigmoid activation func-

tion. As the DOA branch performs a regression task, it produces 

2C linear outputs. 

  System 2 (hereafter referred to as LambdaDep) is 

described by the same block diagram as System 1. The main 

difference is that depthwise separable convolutional layers 

(DSCNN) were used instead of traditional CNNs. Standard 

CNNs combine interchannel information by simply summing the 

convolution outputs from each separate channel. On the other 

hand, DSCNNs split the convolution process into two parts [6]. 

Firstly, a single depthwise convolution is applied to each channel 

separately, keeping the depth dimension the same. Next, P 1x1x8 

kernels are used to mix the interchannel information and lower 

the dimension size to one. This enables efficient multichannel 

information extraction in conjunction with a significant complex-

ity reduction. 

 System 3 (called X-tree) introduces a different concept 

of an arborescent neural network architecture which is depicted 

in Figure 2. In aforementioned models (i.e. System 1 and 2) the 

channels were mixed from the very first layer. In contrast, here 

we present an idea of learning channel-dependent features with 

respect to the magnitude and phase separately. In the first layer, 

each channel is processed by a separate CNN block using P/8 

filters. Moreover, spectrograms and phasegrams are kept in 

completely separate trees, each containing independent branches 

for all channels. In the second step, outputs from the previous 

layer are concatenated for each two adjacent branches and pro-

cessed by convolutional blocks utilizing P/4 filters. The third 

layer repeats this scheme by applying P/2 filters in each block. 

This way the network independently learns magnitude and phase 

features, which are further concatenated. Finally, the network is 

split into two task-dependent branches, just like in the Lambda 

system, starting with the GRU layers.

 

Figure 2: X-tree architecture.
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Additionally, a fourth system (LambdaFus) was submitted. It 

can be described as a straightforward fusion of the first two 

systems trained separately, combining the detection and regres-

sion results by an arithmetic mean. The parameters used for all 

systems are as follows: P=64, MP={8,8,4}, Q=128, R=128 

N=1024. Table 1 summarizes model complexity of the submitted 

systems. The Lambda, LambdaDep and X-tree models are char-

acterized by a much smaller complexity compared with the 

baseline system. In particular, the first two systems use a total 

number of parameters two times less than the baseline system. 

 

Table 1: Total number of parameters used in the submitted mod-

els compared with the baseline system. 

System  Name Model parameters 

0 Baseline 613,537 

1 Lambda 333,537 

2 LambdaDep 282,089 

3 X-tree 429,857 

4 LambaFus 615,626 

3. EXPERIMENTS 

Systems are evaluated using separate metrics for SED and DOA 

estimation. We measure the SED performance using F1 score 

and Error Rate (ER) [7], while DOA error and frame recall 

evaluate the localization performance [8]. Moreover SELD score 

is obtained using the following formula: 

 

𝑆𝐸𝐿𝐷 =
[(1 − 𝐹1) + 𝐸𝑅 +

𝐷𝑂𝐴 𝑒𝑟𝑟𝑜𝑟
180°

+ (1 − 𝑅𝑒𝑐𝑎𝑙𝑙)]

4
    (1) 

 

All models are trained with the Adam optimizer in the 

cross-validation step for 200 epochs. Training is stopped after 30 

epochs of no improvement in both SELD score and training loss. 

For the evaluation, models are trained for 300 epochs with 50 

patience. The SED output uses the binary cross-entropy loss 

function, whereas the log-cosh loss function is used for DOA 

estimation. Experiments are performed using the Keras and 

Theano libraries, the code is based upon the baseline system 

provided by the organizers [5]. Results obtained over 4 cross-

validation splits are presented in Table 2. 

 

Table 2: Cross-validation results for all submitted systems. 

 
SED SEL 

SELD 

 
ER 

F1 

score 

[%] 

DOA 

error 

[°] 

Frame 

recall 

[%] 

Baseline 0.34 79.9 28.5 85.4 0.21 

Lambda 0.33 80.9 32.6 85.4 0.21 

LambdaDep 0.35 80.7 62.2 84.2 0.26 

X-tree 0.34 72.0 70.8 79.3 0.31 

LambdaFus 0.19 88.6 46.85 88.61 0.17 

 

The Lambda model outperformed the baseline system 

in the SED task, however results for localization turned out to be 

slightly worse in terms of the DOA error. The SELD scores for 

both systems are equal to 0.21, which is a promising outcome, as 

the Lambda architecture shows a significantly smaller complexi-

ty. LambdaDep seems to perform worse than its primary model, 

although differences are not very significant, except for an in-

crease in DOA error by two times. As this model demonstrates 

further reduction of system complexity, one way to improve 

performance would be to increase the number of filters.  X-tree 

shows overall the worst results. Since it is the most complex 

among the proposed single models, it is the most difficult one to 

train efficiently. It might also need more training iterations. Best 

results are shown for LambaFus, which significantly outper-

forms all compared systems in terms of SELD score, showing 

that the first two systems work efficiently together even for a 

simple ensemble concept. However even in this case the DOA 

error turns out to be larger than that of the baseline system. 

We note that 30 epochs of patience was used for the 

cross-validation sets to obtain training time reduction. A fuller 

picture of these ideas will be shown with some further experi-

ments using a bigger patience, as well as with forthcoming 

evaluation results.  

4. CONCLUSIONS 

In this report, three single models created for the Sound Detec-

tion and Localization task are presented. The described architec-

tures utilize ideas such as arborescent neural networks and 

depthwise separable convolutions. The proposed systems showed 

an important complexity reduction compared to the baseline 

system. Experiments performed for cross-validations splits 

showed promising results, with Lambda demonstrating an out-

come comparable to the baseline. Additionally, an ensemble 

model LambdaFus is presented, showing that the proposed meth-

ods can complement each other in this field. However more 

research on these ideas is necessary. 
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