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ABSTRACT

This work targets the task 1A and 1B of DCASE2019 challenge that
are Acoustic Scene Classification (ASC) over ten different classes
recorded by a same device (task 1A) and mismatched devices (task
1B). For the front-end feature extraction, this work proposes a com-
bination of three types of spectrograms: Gammatone (GAM), log-
Mel and Constant Q Transform (CQT). The back-end classification
shows two training processes, namely pre-trained CNN and post-
trained DNN, and the result of post-trained DNN is reported. Our
experiments over the development dataset of DCASE2019 1A and
1B show significant improvement, increasing 14% and 17.4 % com-
pared to DCASE2019 baseline of 62.5% and 41.4%, respectively.
The Kaggle report also confirms the classification accuracy of 79%
and 69.2% for task 1A and 1B.

Index Terms— Gammatone, log-Mel, Constant Q Transform
(CQT), Convolutional Neural Network (CNN), Fully-connected
layers.

1. INTRODUCTION

For the front-end feature extraction, it could be divided into
two main approaches, mainly exploring spectrogram of audio
signal. The first group only applies one kind of spectrogram
mainly log-Mel, and different aspects of that feature are explored
such as multi-dimensional log-Mel spectrogram [1], spectro-
gram based wavelet transform [2], auditory statistics conducted
over cochlear filter output [3], or i-Vector from Mel-Frequency
Cepstral Coefficients (MFCC) [4]. The other category explores
various spectrograms likely bag-of-feature. For examples, they
are log-Mel filter and MFCC [5], MFCC, Gammatone filter
and log-Mel [6], or various spectrograms as Perceptual Linear
Prediction (PLP), MFCC, Power Nomalized Cepstral Coefficients
(PNCC), Robust Compressive Gamma-chirp filter-bank Cepstral
Coefficients (RCGCC) and Subspace Projection Cepstral Coeffi-
cients (SPPCC) [7]. This work inspires from the idea that each
spectrogram could contribute distinct attribution that is useful for
back-end learning model. Therefore, we apply three spectrograms
(Gammatone (GAM) [8], log-Mel spectrogram [9] and Constant-Q
Transform (CQT) [9]) and proposed an effective way to combine
them.

Regarding the back-end classifier, convolutional neural net-
work (CNN) has become a strong approach for ASC. In fact,
CNN was early approached for machine hearing tasks [10, 11],
and DCASE2018 challenge showed various CNN architectures
[12, 13, 14, 15, 16, 17] that achieved good results over task 1A and

1B. In this work, we propose a re-trained model that consists of
a pre-trained process based CNN architecture and a post-trained
model with fully-connected layers called pos-trained DNN.

Data augmentation that is useful to enhance the classification
has widely applied for ASC such as adding background noise [18],
frequency shifting [19], or GAN network [20]. This work also
applies a type of data augmentation technique namely mixup that
mixes two original data with various ratios to generate new data.

2. SYSTEM ARCHITECTURE

Figure 1: General System Architecture

The overall system architecture is firstly described as Fig. 1 that
could be divided into two parts. While the upper shows how to gen-
erate features fed into the classification model, the lower presents
two training processes, pre-trained CNN and post-trained DNN.
Firstly, the audio file is transferred into a two-dimensional shape
known as spectrogram and this work exploits three kinds of spec-
trograms (GAM, log-Mel and CQT). The whole spectrogram next
is split into patches, showing the frequency and time size at 128
and 128, respectively. Thus, we apply mixup data augmentation to
generate new data from these patches before feeding both original
data and generated mixup data into classification. Regarding back-
end learning model, the pre-trained CNN is called firstly. When
the pre-trained CNN converses, the high-level feature coming from
the middle layers of pre-trained CNN network are extracted and fed
into pos-trained DNN. Eventually, the result of post-trained DNN is
reported.
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Figure 2: Re-trained Model Architecture

Table 1: Setting Parameters of Spectrogram.

Parameters Values

Window size 1920
Hop size 256

Fast Fourier Number 4096
Frequency Min 10

Frequency resolution 128

2.1. Front-End Feature Extraction

As mentioned above, this work applies three spectrograms: GAM
[8], log-Mel [9] and CQT [9] to generate input features fed into the
classifier. Therefore, these spectrograms have a similar size that
requires the same setting described as Table 1. By setting as Table
1, the entire spectrogram shows frequency and time resolutions of
128 and 1870 respectively, splitting into 14 patches with the size of
128× 128.

2.2. Back-end Classification

The back-end classification consists of two processes that are pre-
trained CNN and post-trained DNN denoted as Fig. 2. For pre-
trained CNN, patches coming from three different spectrograms
are fed into three parallel convolutional blocks namely CNN-G,
and these CNN-Gs show the same configuration as detailed in
Fig. 3. At the final convolutional layer of each CNN-G, global
max/mean pooling layers are used to extract high-level features,
feeding into four fully-connected layers with the configuration of
512 − 1024 − 1024 − 10 respectively. Since we apply three
different spectrograms, we have three separated networks (not-
ing that a single network consists of one CNN-G block and four
fully-connected layers), thus providing three loss functions known
as LossCQT , LossGAM and Losslog−Mel. Therefore, we call
these networks as log-mel, gam or cqt CNN network. Next, ev-
ery high-level feature extracted from the global max/mean pooling
layer of log-mel, gam and cqt CNN networks goes through a fully-
connected layer with size of 256 before adding together. The addic-
tive result is sent to three fully-connected layers and this data flow
is called main CNN network. Totally, we have four loss functions,
three for the log-mel, gam and cqt CNN networks and the final one
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Table 2: Experiment Results Over Task 1B

Class DCASE2019 baseline Our Method
Device B Device C Average Device B Device C Avarage

Airport 18.3 24.1 21.2 25.9 31.3 28.6
Bus 40.4 70.0 55.2 88.8 96.2 92.5

Metro 50.7 36.1 43.4 50.0 55.5 52.7
Metro Station 28.7 36.1 30.0 46.2 48.1 47.1

Park 45.2 57.0 51.1 85.1 94.4 89.7
Public Square 22.8 11.3 17.0 20.3 31.4 25.9
Shopping Mall 63.5 64.8 64.2 61.1 72.2 66.7

Street Pedestrian 37.0 37.6 37.3 53.7 46.2 50.0
Street Traffic 77.0 86.5 81.8 90.7 96.2 93.5

Tram 12.0 12.6 12.3 31.4 51.8 41.6
Overall 39.6 43.1 41.4 55.3 62.3 58.8

Figure 3: CNN-G configuration

for the main CNN called LossMAIN . The final loss function is
computed as the equation (1) that focuses on the classification ac-
curacy of the main CNN network

Loss = (LossCQT +LossGAM +Losslog−Mel)/3+LossMAIN

(1)
Once pre-trained CNN converses over the training set, all

patches of both training set and test set are fed into pre-trained CNN.
Thus, the additive result in main CNN network mentioned above
are extracted, creating input feature for post-trained DNN. Regard-
ing the post-trained DNN, it is constructed by four fully-connected
layers. Both pre-trained CNN and post-trained DNN are trained at
a patch-size level, using softmax at final layers for classification,
built in the Tensorflow framework, using the Adam method [21]
for learning rate optimisation. Batch size and learning rate are set
to 100 and 0.0001 respectively. Eventually, the post-trained DNN
result, conducted over the entire time-frequency spectrogram, will
yield the final classification accuracy.

2.3. Ensemble Model

Basing on the back-end classification mentioned above, we propose
two different types of global pooling that are global max and global

Table 3: Experiment Results Over Task 1A

Class DCASE2019 baseline Our Method

Airport 48.4 69.4
Bus 62.3 90.8

Metro 65.1 71.4
Metro Station 54.5 64.8

Park 83.1 87.3
Public Square 40.7 63.8
Shopping Mall 59.4 73.0

Street Pedestrian 60.9 69.2
Street Traffic 86.7 91.8

Tram 64.0 81.9
Overall 62.5 76.2

mean pooling at the final layers of CNN-G blocks. Therefore, the fi-
nal classification accuracy is the fusion of two results of post-trained
DNN due to global max and mean input features. If we consider
PMEAN and PMAX are scores of post-trained DNN, the final ac-
curacy is computed by averaging;

P̄ = (P̄MEAN + P̄MAX)/2 (2)

2.4. Data Augmentation

In order to increase data variation, various types of data augmen-
tation are explored in ASC task. This work also applies a kind
of data augmentation, called mixup, to enhance the performance.
Let’s consider original data as X1, X2 and expected labels as Y1,
Y2, mixup data is generated by

Xmp1 = X1 ∗ λ+X2 ∗ (1− λ) (3)

Xmp2 = X1 ∗ (1− λ) +X2 ∗ λ (4)

Ymp = Y1 ∗ λ+ Y2 ∗ (1− λ) (5)

Ymp2 = Y1 ∗ (1− λ) + Y2 ∗ λ (6)

with λ ∈ U(0, 1) is random coefficient.

To generate λ, we apply two distribution functions, beta distri-
bution and uniform distribution. We feed both original data and gen-
erated mixup data into classifiers, and considerably extending the
training time of model. In this work, both pre-trained CNN (mixup
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on patch size) and post-trained DNN (mixup on global mean/max
pooling vector) processes apply this augmentation technique to im-
prove the performance.

3. EXPERIMENTS AND RESULTS

Table 3 presents the experiment results on the task 1A [22] and it
shows that the accuracy over every class are improved compared to
DCASE2019 baseline. Next, Table 2 shows the results over the task
1B[22]. Since task 1B is valued on Device B & C, only accuracy on
device B and C are recorded.

4. CONCLUSION

In this paper, we propose a deep learning model that combines
three input spectrogram and explore re-trained method with pre-
trained CNN and post-trained DNN. The experiment results over
DCASE2019 development dataset targeting task 1A and 1B review
that our method are effective to improve the classification accuracy
over every class.
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