
Detection and Classification of Acoustic Scenes and Events 2019 Challenge

END-TO-END DEEP CONVOLUTIONAL NEURAL NETWORK WITH MULTI-SCALE
STRUCTURE FOR WEAKLY LABELED SOUND EVENT DETECTION

Technical Report

Seokjin Lee1, Minhan Kim1, Youngho Jeong2

1 Kyungpook National University, School of Electronics Engineering, Daegu, Republic of Korea,
{sjlee6, kmh7576}@knu.ac.kr

2 Electronics and Telecommunications Research Institute, Realistic AV Research Group,
Daejeon, Republic of Korea

ABSTRACT

In this paper, an end-to-end sound event detection algorithm that
detects and classifies the sound events from the waveform itself.
The proposed model consists of multi-scale time frames and net-
works to handle both short and long signal characteristics; the frame
slides 0.1 second to provide sufficiently fine resolution. The el-
ement network for each time frame data consists of several one-
dimensional convolutional neural networks (1D-CNNs) with deeply
stacked structure. The results of element networks are averaged and
gated by sound activity detection. The decision is made by perform-
ing the double thresholding, and the results are enhanced by class-
wise minimum gap/length compensation. To evaluate our proposed
network, the simulation was performed with development data from
DCASE 2019 Task 4, and the results show that the proposed algo-
rithm has a macro-averaged f1-score of 31.7% for the development
dataset of DCASE 2019 and 30.2% for the evaluation dataset of
DCASE 2018.

Index Terms— Sound event detection, end-to-end, convolu-
tional neural network, raw waveform

1. INTRODUCTION

In order to utilize a machine to help people’s daily lives, the re-
searches that makes the machine understand the environment are
important. Recently, several machine learning algorithms have been
researched to deal with the task to understand the circumstance from
a sound signal including acoustic scene classification (ASC)[1] and
sound event detection problems (SED)[2].

Most of the machine learning algorithms for acoustic signals
utilize frequency-domain features such as Mel-frequency cepstral
coefficient (MFCC), Mel-frequency spectrum [3, 4], or constant-Q
Transform[5]. However, the feature extraction module needs some
parameters to be tuned, e.g. number of bins, window length and
hopsize for short-time Fourier transform, and frequency resolution,
and the values of parameters may affect the performance of the al-
gorithms. Furthermore, it is hard to decide which feature is best for
a specific task among the various kinds of features.

In order to tackle the problem, we consider an end-to-end ap-
proach that utilizes the a law waveform itself as a feature for the
sound event detection. Our work is inspired by the SampleCNN[6],
which is a deep convolutional neural network (CNN) architecture
by stacking several one-dimensional (1D) CNNs, and enhance the
model to be suitable to the SED task.
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Figure 1: A block diagram for the proposed system.

2. PROPOSED MODEL

2.1. Overview for the architecture of the proposed sound event
detector

In the SED task, not only the class but also the onset and offset in-
formation of each sound event have to be identified. Therefore, the
temporal resolution of the prediction results have to be shorter than
the target resolution, which is 0.2 seconds in the DCASE 2018 Task
4. In order to achieve this goal, the proposed SED system consists
of multi-scale sliding temporal window as shown in Fig. 1. Every
frames moves to the right by 0.1 second to provide sufficiently fine
temporal resolution. Because each sound event class have differ-
ent signal characteristics, the required signal length for each class
is also different. In order to handle the both signal classes which
have short and long signal characteristics, the proposed system uti-
lize multi-scale windows such as 0.1, 0.2, 0.3, and 0.4 seconds. As
shown in Fig. 1, the data from each time frame is fed to an element
network.

2.2. Element networks

The data from a single time frame is fed as an input signal to the
element network, as shown in Fig. 2. The element network consists



Detection and Classification of Acoustic Scenes and Events 2019 Challenge

Figure 2: A block diagram for the element network.

of input module, basic convolutional module with and without skip
connection, channel attention module (CAM), backend module, and
output dense layer. The part of structure from the input module
to the last basic convolutional module, which is shown in the left
column of Fig. 2, is called front-end section, and the other part of
structure from the concatenate module to output dense layer, which
is shown in the right column of Fig. 2, is called back-end section.

Fig. 3 shows the specifications of the modules in the element
network. The front-end section consists of several 1D-CNN layers
and max-pooling layers as shown in the specification of basic con-
volutional module (top right of Fig. 3), because it is inspired by
SampleCNN[6]. The third and fourth basic convolutional modules
are modified with skip connection (middle of Fig. 3), which is in-
spired by ResNet[7] , to prevent performance degradation caused by
deep architecture. In addition, a channel attention module (CAM)
(bottom left of Fig. 3) is inserted between the fourth and fifth basic
convolutional modules, which is inspired by convolutional block
attention module (CBAM)[8], to realize a channel-wise attention.
Two dense layers in the CAM have the activations of sigmoid func-
tions, and they compose the bottle neck structure. The input mod-
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Figure 3: Specifications for network modules of the element net-
work.

ule (top left of Fig. 3) consists of a 1D-CNN and the batch nor-
malization, and the ReLU activation layer, and the backend module
(bottom right if Fig. 3) is consists of a 1D-CNN with the ReLU
activation and dropout, global max-pooling layer, and an attention
module consists of a dense layer with the sigmoid activation and
multiply.

2.3. Ensembling and gating the outputs of the element net-
works

As shown in Fig. 1, the outputs of element networks are ensembled
and gated by the end-to-end sound activity detection (SAD) module.
The majority vote and averaging method have been tested as the
ensembling method of the output signals, and the averaging method
has been chosen because it shows more stable performance.

The outputs are multiplied by the prediction result of the end-
to-end SAD module. The end-to-end SAD module is constructed as
shown in Table 1, which is inspired by vadnet[9]. The SAD module
is trained with the strongly labeled (synthetic) dataset where the
ground truth label ySAD(k) for k-th data is generated by the one-
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hot-encoding as

ySAD(k) =

{
[1 0] if ∀y ∈ ystrong(k) = 0,
[0 1] if ∃y ∈ ystrong(k) = 1,

(1)

where ystrong(k) is a many-hot-encoding vector for k-th data of
strongly labeled dataset. The prediction of the SAD module is
thresholded by a predetermined value, then the outputs of the el-
ement networks are multiplied by the 2nd column of the prediction
output matrix.

2.4. Post processing

There are two post processing methods applied to the proposed sys-
tem: double thresholding and minimum gap/length compensation.
The existence of each sound event class is estimated by thresholding
the prediction result with high threshold value first, then the onset
and offset is extended by searching the adjacent value below the low
threshold. Then, we fill the gaps which are shorter than a predeter-
mined minimum gap parameter, and remove the events which are
shorter than a predetermined minimum length parameter.

2.5. Training Procedure

In order to handle the weakly labeled and unlabeled data, the train-
ing procedure consists of three stages:

• Train the model with strongly and weakly labeled data;
• Perform the transfer learning to the back-end section of the

model with unlabeled data using the mean-teacher model[10];
• Tuning the weights of the back-end section using augmented

data from the strongly and weakly labeled data (optional).

Because the weakly labeled data does not contain the onset and
offset data, so the data was annotated by the SAD module in ad-
vance. The mean-teacher model is adopted from the previous re-
search [10] and modified slightly: applying the mean-teacher model
for the frame-wise only because our system cannot support the clip-
wise comparison, and providing the label of the unlabeled data gen-
erated by pseudo-labeling with the trained model in the first stage.
The augmented data were generated by applying the notch filter to
the strongly and weakly labeled; it is inspired by SpecAugment[11]
but using the notch filter instead of frequency masking, because our
model requires the waveform of the augmented data.

3. SIMULATION RESULTS

In order to evaluate the propose algorithm, simulations were per-
formed with the DCASE2019 task4 development dataset. The

Table 1: Structure of SAD module
Layers

Conv1D(16 × 1, 64, strides = 2, activation = ReLU)
MaxPooling1D(4, strides = 4)

Conv1D(32 × 1, 32, strides = 2, activation = ReLU)
MaxPooling1D(4, strides = 4)

Conv1D(64 × 1, 16, strides = 2, activation = ReLU)
MaxPooling1D(4, strides = 4)

GRU(64, activation = tanh)
GRU(64, activation = tanh)

Dense(2, activation = softmax)

dataset consists of 2045 strongly labeled (synthetic) files, 1578
weakly labeled files, and 14412 unlabeled files, with 44100-Hz
sampling frequency. The threshold of the SAD module was set to
0.4, the high thresholds for double thresholding were the values be-
tween 0.4 and 0.7 that are chosen to make good performance for the
validation data in the development dataset, and the low thresholds
for double thresholding were set to the average prediction values for
each class. The length of minimum gap/length compensation was
set to 1 second and it was applied to a long signal classes e.g. frying,
blender, running water, vacuum cleaner, and electric shaver. The in-
put data of test signals were noise-level-normalized to compensate
the system gain difference.

The optimization method was set to Adam [12] with the step
size of 10−3 in the first stage, stochastic gradient descent (SGD)
with the step size of 10−3 in the second stage, and SGD with the
step size of 10−4 in the third stage. The weight of the consistency
loss of the mean-teacher model in the second stage was set to 10.0.

Table 2 shows the simulation results for the validation data of
DCASE2019 and the evaluation data of DCASE2018 with applying
various post processing methods. The performance measures are
macro-averaged f1-score. The meaning of each name in Table 2 as
follows.

• FixThr: double thresholding with fixed high threshold values;
• FixGap: double thresholding with fixed high threshold values

and minimum gap/length compensation;
• VarThr: double thresholding with various high threshold val-

ues for each class;
• VarGap: double thresholding with various high thresholds and

mininum gap/length compensation;
• FixGapAug: double thresholding with fixed high threshold val-

ues, minimum gap/length compensation, and data augmenta-
tion;

• VarGapAug: double thresholding with various high threshold
values, minimum gap/length compensation, and data augmen-
tation.

The results show that the propose algorithm with the post process-
ing of double thresholding with various high thresholds and com-
pensating the minimum gap/length has best performance among the
various post processing methods. The segment-based metric of the
proposed algorithm is slightly worse than or similar to the baseline
performance, but the event-based metric of the proposed algorithm
is better than the baseline performance for both of 2019 validation
and 2018 evaluation dataset.

Table 2: Simulation results for various post processing methods
with f1-score (2019 validation / 2018 evaluation)

Post processing Segment-based Event-based
FixThr 48.3 / 46.4 26.8 / 24.7
FixGap 49.9 / 46.3 29.3 / 27.6
VarThr 54 / 52.1 28.8 / 27.0
VarGap 54 / 52.1 31.7 / 30.2

FixGapAug 50.4 / 48.4 29.6 / 27.8
VarGapAug 52.1 / 50.1 30.6 / 29.2

Baseline 55.2 / 51.4 23.7 / 20.6
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4. CONCLUSION

In this paper, an end-to-end sound event detection method based on
deep CNN structure is proposed. The proposed algorithm consists
of the front-end and back-end section: the front-end section sub-
stituting the feature extraction is developed based on deeply stack-
ing the 1D-CNN layers; the back-end section is developed based
on concatenating the outputs from intermediate stages of the front-
end section, 1D-CNN and global max-pooling layers, and a self-
attention module. To evaluate the proposed system, simulations
with validation dataset from the DCASE2019 task4 and evalua-
tion dataset from the DCASE 2018 task4 were performed to the
proposed model trained by the DCASE2019 task4 training dataset.
The simulation results show that the proposed algorithm has en-
hanced performance than the baseline measured by the event-based
f1-score.
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