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ABSTRACT

This technical report describes the submissions from the SAL/CP
JKU team for Task 1 - Subtask C (classification on data that includes
classes not encountered in the training data) of the DCASE-2019
challenge. Our method uses a ResNet variant specifically adapted
to be used along with spectrograms in the context of Acoustic Scene
Classification (ASC). The reject option is based on the logit values
of the same networks. We do not use any of the provided exter-
nal data sets, and perform data augmentation only with the mix-
up technique [1]. The result of our experiments is a system that
achieves classification accuracies of up to around 60% on the pub-
lic Kaggle-Leaderboard. This is an improvement of around 14 per-
centage points compared to the official DCASE 2019 baseline.

Index Terms— audio scene classification, convolutional neural
networks, deep learning, reject option

1. INTRODUCTION

In this report, we describe our approach to deal with a problem that
is present in many real-world machine learning tasks: the reject
option, also known as selective prediction or open set classification.
It is the problem of developing models that “know what they don’t
know”, and extremely challenging, since the amount of examples of
unknown (i.e., not used in training) classes is infinite, and yet such
examples need to be identified as such.

In this specific case, we want a model capable to distinguish 10
different audio scenes (e.g., bus, airport, or park). At test-time – in
addition to these 10 classes – several audio scenes that are not part
of the training data are presented to the system, and it is supposed
to classify them as unknown. In the development dataset provided
by the DCASE challenge organisers, there are examples of four dif-
ferent audio scenes that are not part of the training data, hence un-
known.

However, there is no guarantee that in the official evaluation
data the unknown examples will be recordings from the same four
audio scenes. Therefore, one has to be very careful not to overes-
timate the reliability of the validation results. Furthermore, simply
including the examples of the unknown classes in the training to be
recognised as an 11th class is not very promising, and most likely
will lead to overfitting.

2. CONVOLUTIONAL NEURAL NETWORKS FOR ASC

In this section we describe the neural network architectures as well
as the optimisation strategies used for training our ASC networks.

2.1. Network Architecture

ResNet exhibits residual connections between its convolutional lay-
ers in order to alleviate the vanishing gradient problem of very deep
architectures [2]. For image processing tasks, ResNet is one of the
top-performing architectures, especially compared to less recent ar-
chitectures like AlexNet [3] or VGG [4].

However, this improvement does not necessarily translate to the
audio processing domain, where VGG-ish architectures dominated
the submissions of the previous DCASE 2018 [5], [6]. Usually,
ResNet variants tend to overfit, unless very large amounts of train-
ing data are available – which is often not the case regarding audio
processing tasks. Recently, it was discovered that the receptive field
(RF) – essentially, what the network effectively sees from the input
– is partly responsible for this.

In [7], it was shown that the RF acts as a regulariser, and can
be adapted in order to yield a variant of the ResNet architecture that
surpasses the performance of a VGG given the same input in the
form of spectrograms. Such a specifically adapted (i.e., RF regu-
larised) version of a ResNet is our starting point, and we train it
to classify the given 10 classes. In Table 1, the architecture is de-
scribed in more detail. More detailed information about the motiva-
tion behind our ResNet variant can be found in [7] and [8].

Table 1: Modified ResNet architecture
RB Number RB Config

Input 5× 5 stride=2
1 3× 3, 1× 1, P
2 3× 3, 3× 3, P
3 3× 3, 3× 3
4 3× 3, 1× 1, P
5 1× 1, 1× 1
6 1× 1, 1× 1
7 1× 1, 1× 1
8 1× 1, 1× 1
9 1× 1, 1× 1

10 1× 1, 1× 1
11 1× 1, 1× 1
12 1× 1, 1× 1

RB: Residual Block, P: 2× 2 max pooling after the block.
RB number 1-4 have 128 channels,
RB number 5-8 have 256 channels,

RB number 9-12 have 512 channels.
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2.2. Frequency-Aware CNNs

Since we are using fully convolutional networks, learned filters are
agnostic to frequency information of the feature maps. In other
words, the spectrograms and feature maps can be rolled over in
both the time and frequency dimension with a minor impact on the
network predictions. One way to make filters more specialised in
certain frequencies is to concatenate a new channel containing the
frequency information of each spatial pixel to each feature map.
The value of the pixel V (f, t) with the spatial index (f, t) in the
new channel is calculated as follows.

V (f, t) = f/F (1)

where F is the frequency dimension size of the feature map. This
additional channel gives convolutional filters a frequency context.

2.3. Network Optimisation

We use Adam [9] with a specific scheduling as follows. First, we
start training with a learning rate of 1 × 10−4. From epoch 50
until 250, the learning rate decays from 1 × 10−4 to the minimum
learning rate 5 × 10−6 in a linear fashion. Afterwards, we keep
training for an additional 100 epochs with the minimum learning
rate in a similar setup as in [7].

2.4. Data Preparation

For data preprocessing we resample the audio signals to 22050 Hz,
and compute a single-channel (mono) Short Time Fourier Trans-
form (STFT) using 2048-sample windows and a hop-size of 512
samples. Next, we apply a perceptual weighting to the individual
frequency bands of the power spectrogram [10]1. As a last step, we
apply a mel-scaled filterbank yielding 431-frame spectrograms with
256 frequency bins per data point.

We normalise the examples to have zero-mean and unit standard
deviation along the individual frequency bins according to the train-
ing data. We do not use the examples representing unknown classes
for training, hence reducing the number of training examples used
for training the network from 10290 down to 9185.

2.5. Data Augmentation

We use the mix-up technique [11] on the training data as the only
means of data augmentation. From our experience, this augmenta-
tion method has the biggest impact on performance and generalisa-
tion capability, compared to other methods like e.g., pitch shifting
or adding noise.

2.6. Reject Option

For the identification of unknown audio scenes we use the single
maximum logit value (i.e., the input to the softmax layer) corre-
sponding to the most likely of the 10 known classes, and apply a
threshold. An example is then considered unknown as soon as the
value of this logit is below the threshold. The threshold could in
principle be determined according to the best results of the valida-
tion data. However, these results might not be reliable enough due
to a lack of proper variety. Therefore, we suggest to apply a differ-
ent – higher – threshold, even though this means that the validation
results will decrease.

1librosa.core.perceptual_weighting

Figure 1: The total score as a function of the threshold for rejects.
We consider relying too much on the validation results dangerous.
Left plot: the average scores (blue) from below and above optimum
threshold (red) according to the validation results; right: increased
threshold leads to equal average scores on both sides of the thresh-
old and we consider this better suited for unseen data.

The reason for that is the way the total score for this task is
computed: it is the weighted average of the known classes and
unknown class accuracies. This specific metric favors aggressive
rejection, which might not be clear at first. In Figure 1, we can
see the total score as a function of the threshold used for the reject
option. As the threshold increases, the rejection rate increases as
well. As can be seen, the total score when nothing gets rejected
(i.e., threshold = 0) is around 0.4. On the other hand, when ev-
ery example gets rejected (i.e., threshold > 8), the score is exactly
0.5. The blue lines correspond to the average score below and above
the chosen threshold (red line), respectively. In the left plot, we have
chosen the threshold according to the maximum score of the valida-
tion data. As can be seen, the average scores from below and above
threshold are different, something that we consider an indicator of
biased thresholding. In the right plot, we increased the threshold,
which leads to equal average scores on both sides of the threshold,
something that we think is better suited to deal with unseen data.

2.7. Ensemble

In order to improve robustness and generalisation of our system, we
create an ensemble of four models, carefully selected according to
the 10-class accuracy of the validation data. First, we average the
logits of the four models, and select the label that corresponds to the
maximum logit value.

These prediction results are then shared across all the systems
for further processing regarding the reject option. For the reject
option, we implemented four different strategies as follows.

• SAL CNN 1: all four models have their own thresholds ac-
cording to the best validation result. Reject if three or more
models vote for reject. Of all methods, this yields the maxi-
mum score on the validation data, but for reasons discussed in
Section 2.6 we don’t consider this result reliable and expect the
lowest generalisation capability of all methods.

• SAL CNN 2: all four models have their own thresholds, but
this time increased by 10% compared to the previously used
thresholds. Reject if one or more models vote for reject.
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Validation Leaderboard Challenge
known unknown total public private known unknown total

SAL CNN 1 .608 .846 .727 .553 .558 n/a n/a n/a
SAL CNN 2 .371 .956 .664 .600 .608 n/a n/a n/a
SAL CNN 3 .294 .977 .635 .605 .608 n/a n/a n/a
SAL CNN 4 .313 .968 .641 .597 .612 n/a n/a n/a
DCASE BL .542 .431 .487 .467 .442 n/a n/a n/a

Table 2: Results of the four submitted methods. All methods share the same 10-class results, and only differ in terms of their rejection
strategy. SAL CNN 1: reject if the majority votes for rejection; SAL CNN 2: 10% increased threshold for single model rejection, reject if
one or more vote for rejection; SAL CNN 3: 20% increased threshold for single model rejection, reject if one or more vote for rejection;
SAL CNN 4: 30% increased threshold for single model rejection, reject if two or more vote for rejection; DCASE BL: official baseline
provided by DCASE organisers [12].

• SAL CNN 3: all four models have their own thresholds, but
this time increased by 20%. Reject if one or more models vote
for reject.

• SAL CNN 4: all four models have their own thresholds, but
this time increased by 30%. Reject if two or more models vote
for reject.

3. RESULTS

In this section, we list our submitted systems and their respective
performances on the public and private Kaggle leaderboard and the
final evaluation set. Just using the vanilla ResNet without any re-
ject option would result in a total score of 0.407 (known: 0.814,
unknown: 0.0).

As can be seen in the validation data results, our four methods
are quite different regarding the aggressiveness of their rejection
(the score for unknown is equivalent to its recall). The least aggres-
sive rejection strategy (SAL CNN 1) yields the best results on the
validation data, yet the lowest score on the leaderboard. We inten-
tionally submitted this method in order to demonstrate the risk of
overfitting when relying too much on the validation results.

The remaining three methods yield similar total scores, but the
accuracies of the known and unknown are quite different. Interest-
ingly, our most aggressive rejection strategy (SAL CNN 3) yields
the lowest score on the validation data, yet the generalisation gap
compared to the leaderboard results is the smallest.

Regarding the Kaggle leaderboard, both public and private
leaderboard results are quite consistent for all four methods.

4. CONCLUSION

This technical report describes our submissions for Task 1 - Sub-
task C of the DCASE-2019 challenge. We use a ResNet variant
specifically adapted in terms of its receptive field to be used along
with spectrograms. The reject option is based on the logit values
of the same networks. We show the risk of tuning the reject option
according to the validation data scores, and propose a more aggres-
sive rejection, which results in lower validation scores, but seems to
generalise better. We do not use any of the provided external data
sets, and perform data augmentation only with the mix-up technique
[1]. We improve around 14 percentage points upon to the official
DCASE 2019 baseline [12] on the public Kaggle leaderboard.
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