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ABSTRACT

In this work, we combine existing Short Time Fourier Transforms
(STFT) of 4-channel array audio signals to create new features,
and show that this augmented input improves the performance of
DCASE2019 task 3 baseline system [1] in both sound event detec-
tion (SED) and direction-of-arrival (DOA) estimation. Techniques
like ensembling and finetuning with masked DOA output are also
applied and shown to further improve both SED and DOA accuracy.

Index Terms— DCASE 2019 task 3, sound event detection,
sound source localization, directions-of-arrival, multi-task learning

1. INTRODUCTION

Sound event detection (SED) and direction-of-arrival (DOA) esti-
mation are two closely related tasks in multi-channel audio signal
recognition, which are recently modelled jointly with neural net-
works [1, 2]. Specifically, the DCASE2019 task3 baseline sys-
tem [1] proposed to use the log-magnitude and phase informa-
tion of STFT of each audio channel as input to the neural net,
whereas inter-channel information such as cross-correlation and
auto-correlation matrix are commonly used in traditional localiza-
tion methods like MUSIC and steering response power (SRP). Mo-
tivated by this, we propose in this work to stack new input channels
corresponding to inter-channel information upon the ones used by
[1], and show that such features improve the SED and DOA perfor-
mance of the baseline to some extent.

The remaining of the paper is structured as follows: section
2 includes an overview of our system, where the preprossessing,
network architecture and ensemble method are described in detail.
Section 3 shows the experiment results on the development dataset,
and how the results of different models are ensembled and submit-
ted for evaluation. Section 4 concludes this work with some discus-
sion.

2. SYSTEM OVERVIEW

2.1. Audio pre-processing

Our model takes as input the STFT spectra of the 4 input channels
from the FOA dataset, as in the baseline system (section 2.1.1). Fur-
thermore, we combine these spectra to generate more input channels
representing the correlation between channels (section 2.1.2).

2.1.1. STFT

Each channel of the audio recordings are applied a STFT with 40ms
window length (1920 samples) and 20ms hop length (960 samples).

Then the complex spectra are normalized on a per-frequency basis,
and denoted as

Xc(t, f) = XR,c(t, f) + i ·XI,c(t, f)

where XR,c ∈ R1024×T and XI,c ∈ R1024×T are the real and
imaginary parts of the spectrum of channel c ∈ {1, 2, 3, 4} (The
0-frequency band is discarded).

2.1.2. Spectrum Combination

In this part, we define five groups of features in terms of XR,c and
XI,c, which are then combined to form different feature sets. First,
we use the log-magnitude and angle of STFT as in the baseline sys-
tem:

log(X2
R,c +X2

I,c) (1)
arctan2(XI,c, XR,c) (2)

Next, the real and imaginary parts

XI,c, XR,c (3)

themselves also consist of a group of features. Although they con-
tain the same information as (1) and (2), they are different facets of
the input signal, and should be helpful to the modelling.

Finally, we add cross power spectrum between channels to the
input to aid the localization task, as such information is commonly
used in traditional localization methods (e.g. MUSIC and SRP). For
example, the cross power spectrum between channels 1 and 2 can
be expressed in frequency domain as:

X1X2 = (XR,1 − i ·XC,1)(XR,2 + i ·XC,2)

= (XR,1XR,2 +XC,1XC,2) + i · (XR,1XC,2 −XC,1XR,2)

Therefore, we can add XR,1XR,2 + XC,1XC,2 and XR,1XC,2 −
XC,1XR,2 to our input. However, we believe that given
XR,1XR,2, XC,1XC,2, XR,1XC,2, XC,1XR,2 as inputs, neural
networks are powerful enough to learn linear combinations of these
second-order terms to form cross power spectrum and other use-
ful features for localization. So as a generalization of cross power
spectrum, we add all the second-order terms to the input:

Xa1,c1 ·Xa2,c2 (4)

where a1, a2 ∈ {R, I}, c1, c2 ∈ {1, 2, 3, 4}, c1 ≤ c2. In our ex-
periments, we indeed observe that introducing these second-order
terms leads to better result.

In summary, the groups (1), (2), (3), (4) have 4, 4, 8, 36 chan-
nels respectively, and three combinations of these groups are used
as input in our experiments: {(2), (4)} (named c40 as it contains 40
channels), {(1), (2), (4)} (named c44) and {(2), (3), (4)} (named
c48).
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2.2. Network

We choose to use baseline CRNN in [1], while the only difference
is that the input is changed from the original 8-channel one of the
following: c40, c44 and c48 (all channels sliced over time to size
1024 × 128), and batch normalization (BN) is applied to the input
before the convolutional layers.

2.3. Ensemble

In this work, we simply use weighted averaging of the model out-
puts for ensembling. First the 4 folds of each model are averaged
with equal weights, then the fold averages of each model are av-
eraged with different weights. Table 2 shows the the weights of
each model and the performance of the ensemble systems. Note
that SED and DOA results are ensembled independently with dif-
ferent weights.

3. EXPERIMENTS

3.1. Dataset

We use TAU Spatial Sound Events 2019 - Ambisonic dataset[3].
The recordings in the development and the evaluation sets are sam-
pled at 48kHz, each recording lasting about 1 minute. The develop-
ment set consists of 400 recordings, evenly divided into four cross-
validation splits. The evaluation set consists of 100 recordings with-
out labels.

3.2. Training

We use Adam optimizer with 0.01 learning rate and batch size 16 for
training 80 epochs, early stopping is also adopted if no improvement
of validation loss persists for 5 epochs. To avoid overfitting, dropout
is applied with rate 0.3.

As can be seen in Table 1, the resulting model has better SED
performance compared to the baseline, whereas the DOA error is
not as satisfactory. To further decrease this error, we propose to
finetune the DOA branch of the network (that is, the two time-
distributed dense layers before the DOA output), while freezing the
rest of the model. Furthermore, we notice that the DOA error is
computed only within the SED events, however the DOA loss is
computed over all classes and all time frames, which makes it un-
necessarily harder to train. To alleviate this difficulty, we apply a
masking layer to the original DOA output of the network, which
performs the following operation:

y′d = yd · Ps + y0 · (1− Ps) (5)

where yd is the DOA prediction from the original model, Ps is
the SED prediction, y0 is a constant array representing the default
DOA values in absence of sound events (azimuth 180◦ and eleva-
tion 50◦), and y′d is the final DOA prediction. In the finetuning
stage, Ps is presumably highly accurate, so we exploit it to indi-
cate the active sound events. High Ps values imply present events,
whose the DOA errors shall be taken into account; On the other
hand, low Ps values means the corresponding events are abscent,
and should be ignored in the loss computation (therefore their DOA
values are replaced by the defaults).

The finetuning is achieved with a learning rate of 0.0002, 0.01
decay and a cyclic learning rate scheduler. As shown in Table 1,
finetuning effectively reduces the DOA error.

As a side note, our masking layer approach is somehow similar
to [2], where they use the ground truth SED as the mask for DOA
during training.

3.3. Evaluation

SED and DOA estimation are evaluated separately, using the fol-
lowing frame-based (each frame lasts 20ms) evaluation metrics: er-
ror rate (ER) and f-score for SED[4], DOA error and frame recall
for DOA estimation[5]. Predictions from all folds are evaluated as
a single experiment to avoid biases under cross-validation[6].

Single system results for different feature sets, with or without
the second stage finetuning are listed in Table 1. In this table, we

Table 1: Evaluation metrics for single system results

Features
combination Finetune

SED
ER

SED
F-score

DOA
ERROR

DOA
FRAME-RECALL

Baseline - 0.34 79.9% 28.5◦ 85.4%

c40 no 0.241 85.8% 35.1◦ 88.0%

c44 no 0.238 86.4% 27.4◦ 88.4%

c44 yes 0.246 86.2% 26.6◦ 88.7%

c48 no 0.231 86.4% 28.6◦ 88.2%

c48 yes 0.237 86.6% 27.4◦ 88.7%

see that among different feature sets, c40 (no angles information
provided) is less accurate than c44 and c48. In addition, for a fixed
a feature set, DOA estimations are in general better with finetuning
in a small sacrifice of SED performance.

Ensemble systems have better performance in all the four met-
rics, as listed in table 2.

Table 2: Evaluation metrics for ensemble systems

Ensemble
system

SED
ER

SED
F-score

DOA
ERROR

DOA
FRAME-RECALL

s1 0.201 88.1% 26.9◦ 89.0%

s2 0.197 88.4% 25.4◦ 89.6%

System s1 is an emsemble of models trained with feature c40, c44
and c48 without finetuning, with ensembling weights being [0.33,
0.33, 0.33] for SED and [0.048, 0.476, 0.476] for DOA estimation.
System s2 is an ensemble of models trained with feature c40, c44,
c48 without finetuning, and two finetuned models with feature c44,
c48, ensembling weights being [0.2, 0.2, 0.2, 0.2, 0.2] for SED and
[0., 0.25, 0.25, 0.25, 0.25] for DOA estimation.

3.4. Submission

We submitted two systems: Leung_DBS_task3_1 and
Leung_DBS_task3_2, corrsponding to s1 and s2 in Table 2.

4. CONCLUSION AND DISCUSSION

In this work, we see that by extending the inputs with new channels,
the SED and DOA estimation performances are improved. Further-
more, this method can potentially give any network performance
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a boost as it is general and independent to the network architec-
ture. Besides, we observe that ensembling and finetuning with DOA
mask layer are also beneficial.

On the side note, we also experimented on an augmented
dataset containing remixed audios with an increased number of
polyphonic events, but the model suffered from severe underfitting.
It’s left for future work to detect polyphonic events more accurately.
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