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ABSTRACT

In this report, we present the technical details of our proposed
framework and solution for the DCASE 2019 Task 1A - Acous-
tic Scene Classification challenge. We describe the audio pre-
processing, feature extraction steps and the time-frequency (TF)
representations used for acoustic scene classification using binaural
audio recordings. We employ two distinct architectures of convo-
lutional neural networks (CNNs) for processing the extracted audio
features for classification and compare their relative performance in
terms of both accuracy and model complexity. Using an ensemble
of the predictions from multiple models based on the above CNNs,
we achieved an average classification accuracy of 79.35% on the
test split of the development dataset for this task and a system score
of 82.33% in the Kaggle public leaderboard, which is an improve-
ment of ≈ 18% over the baseline system.

Index Terms— DCASE 2019, acoustic scene classification,
convolutional neural networks, binaural signals.

1. INTRODUCTION

Humans perceive their surroundings primarily through the visual
and audio cues presented to their eyes and ears, respectively.
Though visual stimuli provide a substantial amount of information
regarding the scene, it is inarguable that audio cues also play a vital
role in determining the type of the environment we are immersed
in. For example, an immersive experience through virtual reality
(VR) is deemed satisfactory only when the associated audio aligns
with the visual scene. In a simpler scenario, a person standing near
a beach with eyes closed can easily infer that they are near the shore
from the sound of the waves hitting the rocks or from the sound of
the seagulls. It is easy to conclude that acoustic characteristics of
certain environments have their own unique signature, which aids
humans in distinguishing an audio scene from another.

The objective of acoustic scene classification is to empower
a machine to automatically recognize the audio scene from the
audio signals they are provided with. The advancement of deep
learning algorithms along with availability of large datasets and in-
crease in computational power has helped to address the acoustic
scene classification challenge to a great extent. The DCASE 2019
challenge [1] consists of a total five separate challenge tasks, with
Acoustic Scene Classification being one among them. This task is
further divided into three subtasks, wherein we participate in the
DCASE 2019 Task 1A. In this subtask, the development data and
evaluation data are obtained from same the recording device.

We begin this report by describing our audio pre-processing,
feature extraction and data augmentation steps in Section 2. In Sec-

tion 3, we provide details on the CNN architectures used. The de-
tails of the challenge database and our results are provided in Sec-
tion 4. Finally, the conclusions are presented in Section 5.

2. FEATURE EXTRACTION & DATA AUGMENTATION

In this section, we describe the audio pre-processing steps as well as
the binaural audio feature extraction process. The extracted features
are then provided as input to the convolutional neural network for
predicting the acoustic scene class. In addition, we also discuss the
data augmentation step used to improve the model’s generalization
to unseen data.

2.1. Binaural audio feature extraction

In our proposed system, we use the originally provided audio data
sampled at 48 kHz without down sampling. The time domain au-
dio signals are then normalized by amplitude and then converted
to the time-frequency (TF) representation to extract the temporal
and spectral characteristics. As such, we first compute the short-
time Fourier transform (STFT) of the normalized time-domain au-
dio signal. The frame size for the STFT operation is fixed at 2048,
with a frame overlap of 50% and hanning window. Due to the large
dimension of the linear STFT representation, we further compute
the corresponding Mel-spectrogram representation using 128 Mel-
bands. The use of Mel-scale is more close to the human auditory
system and provides additional advantage of having lower dimen-
sion than conventional linear STFT. As the final step, we compute
the Log(·) of the Mel-spectrogram to reduce the dynamic range of
the values and also make the feature space more Gaussian in distri-
bution as reported in [2]. On the computed Log Mel-spectrograms,
we performed feature normalization to achieve zero mean with unit
variance. This mean and standard deviation was computed using
the training data and the same were used on the validation/test split.

Since the recorded data set in this task is binaural audio, the
above Log Mel-spectrogram is computed separately for the Left
(L), Right (R), Mid (M), Side (S) representation. In addition,
we also use the conventional mono representation of the binuaral
signal for computing the Log Mel-spectrogram. The Mid and Side
representation of the L & R signals are computed as follows

M = (L+R)/2

S = (L−R)/2.
(1)

The use of these binaural representations for audio classification
have been explored in the earlier DCASE audio scene classifica-
tion challenges [3] and has been reported to achieve superior per-
formance. However, compared to [3] we do not split the 10 second
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Figure 1: Our overall solution framework consisting of binaural audio representation, feature extraction steps, multiple CNNs & model
ensembling for final prediction of the acoustic scene.

audio clips to smaller audio chunks. The obtained 2D spectrogram
of size 128 × 469 per channel is provided as input to the neural
network. In addition, instead of using each channel as a separate in-
put to the CNN and concatenating the CNN outputs at a later stage,
we combine the channels at the first layer of convolution itself. To
further simplify the feature extraction step, we do not perform the
background subtraction (BS) method as well as the harmonic per-
cussion source separation (HPSS) based audio representations re-
ported in [3]. The entire framework of our solution depicting the
audio representations, feature extraction, multiple CNNs and en-
sembling step is shown in Figure 1.

2.2. Data Augmentation

It is well-known that deep learning algorithms perform well when
they are trained on large amounts of data. However, depending on
the task, the amount of labelled data for training maybe limited or
constrained. This may result in the deep learning algorithms not to
fully capture the intra-class and inter-class variations in the data. In
such situations, data augmentation plays a crucial role to increase
the amount of training data. For acoustic signals, the conventional
augmentation include pitch shifting, time stretching, noise addition,
dynamic range modulation etc. Another variation of similar aug-
mentation is to mix the clips of same acoustic class by splitting
and shuffling. Recently, the use of generative adversarial networks
(GANs) for data augmentation has also been explored in [4].

In our proposed method, to ensure a better generalization capa-
bility for the neural network, we perform the augmentation method
proposed in [5], termed as mixup. In this method, two training ex-
amples are weighted and mixed together along with their class la-
bels to form virtual training examples as

x̃ = λxi + (1− λ)xj
ỹ = λyi + (1− λ)yj ,

(2)

where (xi, yi) and (xj , yj) are two samples drawn at random from
the training set, with λ ∈ [0, 1] acquired by sampling from the β
distribution β(α, α), with α being a hyper parameter.

3. CNN ARCHITECTURE

The audio features extracted by the pre-processing steps explained
in Section 2 are provided as input to a convolutional neural network

(CNN). CNNs have been vastly used for audio scene classification.
They have the ability to learn both spectral and temporal patterns
of the audio features. In our work, we experiment with two sepa-
rate architectures of CNN. The first CNN architecture is similar to
the VGG-style architecture, which uses a constant (3 × 3) square-
shaped kernels. However, we use significantly less number of con-
volution and dense layers as compared to the original VGG archi-
tecture. In the second CNN architecture, we employ rectangular
kernels for convolution. CNNs with rectangular kernels have been
previously used for speech and music genre classification. The use
of such rectangular kernels help to treat the spectral and temporal
components of the audio separately. In the following subsections,
we further elaborate on the above two CNN architectures.

3.1. CNN: Type-1

This CNN architecture is similar to the VGG-style architecture. It
consists of 5 convolutions with increasing number of filters, i.e.,
{64, 128, 256, 512, 512}. The kernel size is chosen as (3 × 3)
and is kept constant for all the convolution layers. We also apply
batch normalization and ReLU non-linear activation for each con-
volution layers. Max pooling (2× 2) operation is performed at the
first three convolution layers to reduce the dimensionality. Finally
we perform global max pool operation to gather all the components,
which is then connected to a dense layer of 256 units with ReLU ac-
tivation. The output layer consists of 10 units corresponding to the
number of scene classes and undergoes softmax operation to ob-
tain the prediction probabilities. The CNN: Type-1 has ≈ 4 million
parameters.

3.2. CNN: Type-2

In this CNN architecture, we employ rectangular kernels instead of
square kernels. It consists of 4 convolutions with increasing number
of filters, i.e., {64, 128, 256, 512}. For the convolution layer-1, we
apply a kernel of size (3× 7), followed by a max pooling with size
(3 × 1). After reducing the dimension in the frequency axis, con-
volutions with kernel size (3× 1) is applied in the next convolution
layer. We further reduce the dimension in the frequency axis by us-
ing (4×1) max pooling. In the layer-3 convolution, we use a kernel
size of (11 × 1) and perform ”valid” convolutions. This step com-
presses the entire frequency axis. The last convolution layer uses
filter size of (1× 7) to learn the temporal characteristics. Note that
we have not performed pooling across time dimension. Similar to
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CNN-1, we apply batch normalization and ReLU non-linear activa-
tion for each convolution layers. After the convolution layers, all the
components are collected using the global max pooling operation,
which is further input to a fully connected layer of 256 units with
ReLU activation. The output layer consists of 10 units correspond-
ing to the number of scene classes and undergoes softmax operation
to obtain the prediction probabilities. The advantage of using this
CNN architecture is in its complexity. The CNN: Type-2 uses ≈
1.4 million parameters. This is 4 times lower number of parame-
ters as compared to CNN: Type-1 and therefore, is a less-complex
(light-weight) architecture.

Note that for both LR & MS representations, the input size is
128 × 469 × 2, with each channel arranged back to back. For the
case of mono representation, the input size is 128× 469× 1.

4. DATABASE & RESULTS

The TAU Urban Acoustic Scenes 2019 dataset for this task is the
extension of the 2018 TUT Urban Acoustic Dataset, consisting of
binaural audio recordings from various acoustic scenes in differ-
ent cities. The recordings were made using the Soundman OKM II
Klassik/studio A3, electret binaural microphone and a Zoom F8 au-
dio recorder using 48 kHz sampling rate and 24 bit resolution so that
the recorded audio is very similar to the sound that reaches the hu-
man ears. For each acoustic scene class, such recordings were col-
lected from different locations in the city. Each original recordings
were split into segments with a length of 10 seconds as develop-
ment and evaluation set. The audio scenes are namely {”Airport”,
”Indoor shopping mall”, ”Metro station”, ”Pedestrian street”, ”Pub-
lic square”, ”Street with medium level of traffic”, ”Travelling by a
tram”, ”Travelling by a bus”, ”Travelling by an underground metro”
& ”Urban park”}.

From the training split of the development set, we use a ran-
dom split of 15% as the hold-out validation set. The optimization is
performed using the Adam optimizer, with an initial learning rate of
0.001 and a maximum epoch of 200 with a batch size of 32 samples.
We reduce the learning rate if the validation loss does not decrease
after 5 epochs. We use early stopping method if the validation loss
does not decrease after 10 epochs. The categorical cross-entropy is
chosen as the loss function. For the data augmentation step using
mixup, we kept α = 0.3. The baseline system also used a CNN
based approach on Log Mel spectrum of 40 bands, consisting of
two CNN layers and one fully connected layer. We chose Keras as
our deep learning framework for all experiments.

For the CNN: Type-1, using the mono representation, we get
an average accuracy of 73.04%. In comparison, the MS and LR
representation, we achieve an accuracy of 75.19% and 74.2%, re-
spectively. Using the ensemble of MS, LR mono representations,
we get an accuracy of 78.5%. For CNN: Type-2, the accuracy are
69.86%, 72.9% & 69.79% using the mono, MS and LR represen-
tation, respectively. The performance drop maybe due to the low-
complex architecture used in CNN: Type-2. As such, we select the
top-4 best performing models for the final ensembling. We ensem-
ble the predictions from each of the 4 models by computing the
geometric mean of the predictions. The final prediction is done by
selecting the class with maximum probability on the ensembled pre-
diction. After this ensembing, we obtain an accuracy of 79.35% on
the test split of the development set. In the Kaggle public leader-
board, the same solution achieved a system score of 82.33%. The
classification results compared with the baseline system are shown
in Figure 2. The confusion matrix obtained we obtained using the

Figure 2: Average classification accuracy for the baseline system as
well as each of our proposed models.

Figure 3: Confusion matrix of the proposed system after ensem-
bling.

ensembled model is shown in Figure 3.

5. CONCLUSIONS

In this report, we provided the details of our solution to the
DCASE2019 Task1A - Acoustic Scene Classification. We de-
scribed the audio pre-processing, feature extraction steps and the
various binaural audio feature representations used as input the neu-
ral network. The architecture of the convolutional neural networks
used for the classification task are described. Our solution achieves
an average accuracy of 79.35% on the test split from the develop-
ment set. The same solution achieved a system score of 82.33% in
the Kaggle public leaderboard, which is an improvement of≈ 18%
over the baseline system.
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