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ABSTRACT
In this report, we present our systems for the subtask A and sub-
task B of the DCASE 2019 Task1, i.e. acoustic scene classification.
The subtask A is a basic closed-set classification. Its data was col-
lected from a single device. In our system, we first extracted several
acoustic features such as mel-spectrogram, hybrid constant-Q trans-
form, harmonic-percussive source separation, etc. Convolution neu-
ral networks (CNN) with average pooling are used to categorize the
acoustic scenes. We trained a CNN given each acoustic feature, and
integrated the CNNs by averaging their outputs. The subtask B is a
classification problem on mismatched devices. For this task, we first
introduce a Domain Adaptation Neural Network (DANN) to extract
domain-unrelated features, and further aggregated the DANN with
the CNN models for better performance. The accuracies of our sys-
tem for the subtask A are 0.783 on the public validation dataset
and 0.816 on the leaderboard dataset respectively. The accuracy for
the subtask B is 0.717 on the leaderboard dataset, which shows the
effectiveness of our method on the cross-domain problem.

Index Terms— DCASE 2019, acoustic scene classification,
domain adaptation neural network, convolution neural network.

1. INTRODUCTION

Sounds carry a large amount of information about our everyday en-
vironment and physical events [1]. Developing signal processing
methods to extract this information automatically has huge poten-
tial in several applications, such as information retrieval [2], mo-
bile devices, robots, etc. Acoustic scene classification (ASC) [3] is
one of such ongoing research subjects. Its aim is to classify audio
recordings, recorded in a public area, into predefined acoustic scene
classes. It is an important task for human [4]. If a computer can
automatically recognize acoustic scenes, it can be applied to var-
ious fields, such as robotic navigation [5], context-aware services
[6], surveillance [7] and etc.

Detection and classification of acoustic scenes and events
(DCASE) hosted by IEEE audio and acoustic signal processing
(AASP) is a series of challenges aimed at developing sound classi-
fication and detection systems, in which the dataset is open and the
evaluation system is provided [8]. It is also one of the first large-
scale challenges of ASC research. In DCASE 2019, ASC is under
the task 1, which includes 3 subtasks viz: a matching device ASC
subtask, a mismatching device ASC subtask and an open set ASC
subtask.

A number of novel approaches had been proposed in previous
DCASE challenges. Most of the submissions in those challenges

were based on hand-made features, such as Mel frequency cepstral
coefficients (MFCC) [9][10], linear prediction cepstral coefficient
[11] and perceptual linear predictive [11]. Some features that are
widely used for image processing, such as the histogram of gra-
dients and local binary patterns [12], are also good presentations
of acoustic scenes. In DCASE 2017 and DCASE 2018, log-mel
energies [4][13][14] and its harmonic-percussive source separation
(HPSS) [4][15] were two main features used in most submissions.
Beside, constant Q transformation (CQT) were also employed such
as in [16][14]. However, we find that most of those works focused
on developing powerful classifiers, while little attention was paid
on discriminant acoustic features.

In early challenges, conventional machine learning models are
used, such as Gaussian mixture model [10] and support vector ma-
chine [17], as well as conventional i-vectors [9] and non-negative
matrix factorization [18]. Recently, the state-of-the-art methods in
the DCASE tasks are based on convolution neural networks (CNN)
[4][14][15][19][20]. Specially, Kong et al. [20] proposed gener-
ic cross-task baseline systems based on CNN for all tasks of D-
CASE 2019. The CNN based methods usually take the log-mel
spectrograms of audio recordings as the acoustic features in either
the frame-level or the clip-level.

In the DCASE 2019 challenge, we proposed two different AS-
C systems for the subtask A and subtask B respectively. For the
subtask A, we first extracted several different features that have
complementary information with each other. Then, we fed two-
dimensional features into two dimensional CNN (2D-CNN) sep-
arately, such as log-mel energies and its HPSS, Hybrid constant-
Q transform (HCQT), and fed the original waves into a one-
dimensional CNN (1D-CNN) directly. Finally, we fused the outputs
of different CNN models for prediction. Subtask B is a classifica-
tion problem with mismatched domains, which is a cross-channel
problem. For the subtask, we proposed a Domain Adaptation Neu-
ral Network (DANN) [21] framework to project different domains
into one common subspace. Here, we regarded the data from device
A as the source domain and the data from devices B and C as the
target domains. To extract more information of the acoustic scenes,
we chose 64 log-mel energies of the spectrograms as the main fea-
ture. Besides, we also adopted CNN for the classification problem
of the subtask B, and aggregated DANN and different CNNs that
take different input features for prediction.

This technical report is organized as follows. Section 2 presents
the framework of our system. Then, Sections 3 and 4 illustrate the
features and CNN models in detail. Section 5 presents the experi-
ments. Section 6 concludes this report.
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2. FEATURE EXTRACTION

2.1. Log-mel Energies

The log-mel energies is the most popular feature for acoustic scene
classification, as well as other tasks in DCASE. It is considered to
be the most suitable for acoustic scene classification [4]. Short-
time Fourier transform (STFT) can calculate the spectrogram by
multiplying the window function frame by frame to look at the time
change. First, we extract the spectrogram with STFT. The window
function of STFT is a Hann window, the window size is 2048 (64
ms) and hop size is 500 (15ms). Therefore, there are 64 frames in
one second. Then, we apply Mel-filter banks on spectrogram to get
Mel-energies, where filter bins equal 256 in subtask A and 64 or
128 in subtask B. In addition, cut-off frequencies of Mel-filter are
from 50 Hz to 14 kHz. A logarithm operation is further applied to
obtain the log-mel energies. Therefore, we can obtain a feature of
[640, 256, 1] from one audio recording.

2.2. Harmonic-percussive source separation

Sound can be generally be divided into two types: harmonic and
percussive. Han et al. separated the audio clips into two using H-
PSS in DCASE 2017 for the first time, which enables to separately
exploit harmonic and percussive aspects of a sound [15]. Similar-
ly, we applied HPSS on Mel-spectrogram with the parameters de-
scribed in subsection 2.1. For HPSS, we used the corresponding
function in librosa which is a Python package for music and audio
analysis. The initial values in librosa are used for parameters of
HPSS algorithm. Then we can obtain data of [640, 256, 2] shape
from one audio recording.

2.3. Hybrid constant-Q transform

Constant-Q transform essentially transforms a series of data to the
frequency domain. It is similar to the STFT and very closely related
to the complex Morlet wavelet transform. CQT is a common fea-
ture in music signal processing and acoustic scene analysis. HCQT
uses the pseudo CQT for higher frequencies where the hop length
is longer than half the filter length. For lower frequencies, HCQT
uses the full CQT. It is a more computationally efficient version of
CQT. We extract 84-dimensional HCQT with the initial parameter
in librosa. Therefore, we get a feature of [640, 84, 1] shape from
each audio recording.

3. MODELS

In our system, the classifier is based on CNN. For subtask A, we
built two CNN models for acoustic scene classification, i.e. two-
dimensional CNN for two dimensional feature and one-dimensional
CNN for wave. For subtask B, we built a multi-task neural network
with adversarial training. Besides, we built other six CNN models
to make a combined prediction.

3.1. Two-dimensional CNN

We followed the CNN framework proposed in [20], as is illustrated
in Tab. 1. Inspired from VGG network, we built a convolution block
using two cascaded convolution layers with 3×3 kernels. Each con-
volutional operation was followed by batch normalization to speed
up and stabilise the model training. After batch normalisation, we

applied ReLU as non-linearity activation function. For each con-
volutional block, we used average pooling with a size of 2 × 2 in
subtask A. We also used max pooling in subtask B. Finally, a ful-
ly connected layer with softmax nonlinearity was applied to predict
acoustic scene for each recording. Because ASC is a classification
task, we chose cross entropy loss to train the network.

Table 1: Two-dimensional CNN

Input: features
(3x3) Conv2D-64-BN-ReLU
(3x3) Conv2D-64-BN-ReLU

(2x2) Average Pooling
(3x3) Conv2D-64-BN-ReLU
(3x3) Conv2D-64-BN-ReLU

(2x2) Average Pooling
(3x3) Conv2D-64-BN-ReLU
(3x3) Conv2D-64-BN-ReLU

(2x2) Average Pooling
(3x3) Conv2D-64-BN-ReLU
(3x3) Conv2D-64-BN-ReLU

(2x2) Average Pooling
Dense-10-SoftMax

3.2. One-dimensional CNN

Considering the aforementioned features are extracted based on fre-
quency domain, the wave is a signal of time domain, which will
offer complementary information. Therefore, we built a 1D-CNN
and use raw audio directly to train it. First, we resampled all au-
dio samples at 16 kHz. The CNNs classified the raw audio using
one-dimensional convolution along the time. Tab. 2 shows the net-
work architecture. Similar to 2D-CNN, we also built a convolution
block using two cascaded convolution layers. Batch normalization
and ReLU function were used after each convolutional operation.
In the first convolution block, we used big kernel size and pooling
size because the signal in time domain has much redundant infor-
mation. After four convolution blocks, we took a dropout with 0.2
rate to avoid overfitting. Finally, two dense layers were applied to
predict acoustic scene for each recording.

3.3. Domain Adaptation Neural Network

Subtask B is a cross-channel problem. We proposed to project data
from the different domains into one common subspace to mitigate
domain mismatch. The framework of our system for subtask B is il-
lustrated in Fig. 1. It comprises three parts, including feature extrac-
tor, scene predictor and domain predictor. This is realized by train-
ing a multi-task neural network that learns a scene-discriminative
and domain-invariant feature representation, which DANN mainly
does.

DANN is different from traditional feed-forward neural net-
work which has single input and single output, but is similar to the
multi-task neural network. In the structure of DANN, there is one
input layer and two output layers. We assume that the input data
as x ∈ X, scene label y ∈ Y and domain label d ∈ {[0, 1], [1, 0]},
where X and Y are input space and output space. We assume that
there are two different domains, source domain S and target domain
T. Denote with di for the i-th sample, indicating which domain the
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Table 2: One-dimensional CNN

Input: wave
(9x1) Conv1D-16-BN-ReLU
(9x1) Conv1D-16-BN-ReLU

(16x1) Average Pooling
(3x1) Conv1D-32-BN-ReLU
(3x1) Conv1D-32-BN-ReLU

(10x1) Average Pooling
(3x1) Conv1D-32-BN-ReLU
(3x1) Conv1D-32-BN-ReLU

(10x1) Average Pooling
(3x1) Conv1D-256-BN-ReLU
(3x1) Conv1D-256-BN-ReLU

Global Average Pooling
Dropout (0.2)

Dense-64-ReLU
Dense-10-SoftMax

Figure 1: Framework of DANN.

data comes from. If xi is from source domain, its domain label will
be [1, 0], otherwise its domain label will be [0, 1].

The feature extractor aims to find one representation which is
discriminative in different scenes while indiscriminating in differ-
ent domains. The scene classifier and domain classifier mainly help
train the feature extractor, but the former also plays an important
role in predicting the scene label in ASC. We assume that the fea-
ture extractor as Gf with parameters θf , the scene classifier as Gy
with parameters θy , the domain classifier asGd with parameters θd.
In the training process of DANN, the three parts are trained simulta-
neously and we want to find suitable θf to minimize the scene clas-
sification loss while maximize the domain classification loss. This
can be achieved with the help of a gradient reversal layer which
is between the feature extractor and the domain classifier and can
find the saddle point between scene classifier and domain classifier.
Generally, we need to search a positive hyper-parameter to multiply
the gradient reversal layer to make a balance between losses of the
two classifiers. For two classifiers, we need to search θy and θd to
minimize the prediction losses.

We define the loss function of DANN for source data as:

E(θf , θy, θd) =

N∑
i=1

Ly(Gy(Gf (xi; θf ); θy), yi)−

λ

N∑
i=1

Ld(Gd(Gf (xi; θf ); θd), di)

=

N∑
i=1

Liy(θf , θy)− λ
N∑
i=1

Lid(θf , θd)

(1)

where di = [1, 0], Liy is the loss of the i-th training sample for scene
label and Lid is the loss of i-th training sample for domain label. We
select different loss functions for them: cross entropy for the former
and Mean Square Error (MSE) for the latter.

Based on our idea, we are seeking a set of parameters θ̂f , θ̂y ,
θ̂d that deliver a saddle point of the function Eq. 1:

(θ̂f , θ̂y) = arg min
θf ,θy

E(θf , θy, θ̂d) (2)

θ̂d = argmax
θd

E(θ̂f , θ̂y, θd). (3)

θy can be optimized by minimizing Eq. 1, while θd can be opti-
mized by maximizing the equation. We optimize θf by minimizing
the first item while maximizing the second item. As for updates of
the parameters, we choose adaptive moment estimation (Adam) ap-
proach. In this way, we can make sure that the extracted feature are
scene-discriminative and domain-invariant.

3.4. Fusion

To obtain better performance, we adopted an ensemble strategy, i.e.
fusing the output of different methods, including different features
and CNN with different topologies. For subtask A, we used all
of aforementioned features. We fed four features into 2D-CNN,
i.e. log-mel spectrogram, HPSS, HCQT and MFCC, and fed the
raw wave into 1D-CNN directly. Finally, we average the outputs of
those methods in probability space.

For subtask B, we fed two features into CNN, i.e. log-mel spec-
trogram and HCQT. Then we fused the outputs of CNN with differ-
ent settings, where the layers ranged from 5 to 13 with interval of 2
and pooling layer can be average pooling or max pooling.
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4. EXPERIMENTS

4.1. Dataset

The dataset for ASC task is the TAU Urban Acoustic Scenes 2019
dataset, consisting of recordings from various acoustic scenes [1].
The recordings are recorded from different locations in 12 European
cities with different devices. There are 10 acoustic scenes, includ-
ing airport, shopping mall, metro station, pedestrian street, public
square, street with traffic, tram, bus, metro and urban park. The au-
dio dataset includes three different versions: TAU Urban Acoustic
Scenes 2019, TAU Urban Acoustic Scenes 2019 Mobile and TAU
Urban Acoustic Scenes 2019 Openset. The first dataset is used for
subtask A where the development and evaluation are recorded with
device A. It contains 40 hours of data. The length of each recording
is 10s, therefore we have 14400 segments. In test set, there are 7200
segments to predict.

The second dataset is used for subtask B where the material is
recorded with devices A, B and C. Data from device A is resam-
pled and averaged into a single channel, to align with the properties
of the data recorded with devices B and C. For subtask B, the de-
velopment data set contains in total 46 hours of data, with 16560
segments, of which 14400 from device A, 1080 from device B and
1080 from device C. In the training set, there are 10625 segments
in all with 9185 for device A, 540 for device B and 540 for device
C. In the test set, there are 5265 segments in all with 4185 for for
device A, 540 for device B and 540 for device C.

The DCASE 2018 dataset is recorded using binaural micro-
phone. We first got mono audio by averaging the two channels.
Then, the DCASE 2019 dataset was sampled at 48 kHz. Learned
from [20], 32 kHz sampling rate can contain most energy. For both
subtask A and subtask B, we resampled all audio recordings at 32
kHz.

4.2. Baseline System

The official baseline system implements a convolutional neural net-
work (CNN) based approach. Log-mel energies are first extracted
from each recording, and then a network consisting of two CNN
layers and one fully connected layer is trained to assign scene label-
s to the audio signals. The detailed structure is shown in [1]. For
both subtask A and subtask B, the evaluation criterion is classifica-
tion accuracy (ACC), which is obtained by averaging the class-wise
accuracy of all sound classes.

4.3. Result

The table below shows the development or leardboard performance
of different models. The official baseline system result is from offi-
cial website of DCASE [1] and leaderboard in Kaggle [22][23].

The result of subtask A is shown in Tab. 3. In subtask A, the
CNN with log-mel energies achieves an accuracy of 0.721, outper-
forming the system in [20] and official baseline system. Our fusion
system achieves an accuracy of 0.835 and tied for fourth place.

In subtask B, we combined seven models, including DANN and
other six CNN models to make predictions on the three features
respectively. We made a fusion on the predictions, which achieved
0.717 on leaderboard, as shown in Tab. 4.

Table 3: Comparison results of subtask A between different meth-
ods and feature types.

Methods ACC on validate ACC on leaderboard
Baseline system 0.625 0.643
Mel-2D-CNN 0.721

HPSS-2D-CNN 0.724
HCQT-2D-CNN 0.679
MFCC-2D-CNN 0.663
wave-1D-CNN 0.570

Fusion 0.795 0.835

Table 4: Comparison results of subtask B between different meth-
ods and feature types.

Methods ACC on leaderboard
Baseline system 0.480

64 log-mel-combined 0.675
128 log-mel-combined 0.707

HCQT-combined 0.667
Fusion 0.717

5. CONCLUSION

In this paper, we described our systems for subtask A and subtask
B of DCASE 2019 task1. For subtask A, we extracted a set of fea-
tures and fed them into CNN separately. For subtask B, we fed
log-mel energies and HCQT into two CNN models, i.e. 2D-CNN
and DANN. Finally, we made fusion on outputs of different method-
s. Experimental results showed our systems outperformed baseline
systems.
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