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ABSTRACT

The Sounds of New York City (SONYC) research project aims to
mitigate urban noise pollution in the context of a megacity. This
project has deployed 50 different sensors in various areas of the
New York City installed back in 2015 to monitor the overall sound
pressure level. However, this is not enough to determine the noise
sources, needed to detect noise code violations. Within the Task
5 of DCASE2019 challenge, an urban sound tagging challenge is
proposed where the participants are asked to develop a machine lis-
tening system that distinguishes between 23 sources of noise pollu-
tion. The system is asked to predict whether the source is present
or absent in 10-second scenes recorded by the SONYC. Moreover,
annotations are also provided at a higher level, classifying the 23
fine labels in 8 coarser labels. In this report, the authors present a
machine listening approach based on an augmented neural network
where both coarse and fine-level annotations are used to predict the
event presence in the same network. This approach obtains a clas-
sification accuracy on the validation split of 87% at the coarse level
and 92% at the fine level.

Index Terms— urban sound tagging, DCASE, soundscape,
classification, machine listening

1. INTRODUCTION

The fifth edition of the IEEE AASP Detection and Classification
of Acoustic Scenes and Events (DCASE2019)1 takes place in 30
March - 31 July 2019. In this edition, five tasks have been pro-
posed: i) acoustic scene classification, ii) audio tagging with noisy
labels and minimal supervision, iii) sound event localization and
detection, iv) sound event detection in domestic environments, and
v) urban sound tagging; being the latter the one addressed in this
report.

The Urban Sound Tagging (UST) task asks the participants to
predict whether each of the 23 predefined noise sources are present
or absent in a 10-second scene recorded by the Sounds of New York
City (SONYC) acoustic sensor network [1]. Another annotation is
also provided, grouping the 23 noise sources in 8 higher-level la-
bels. The participants are asked to predict the presence probability
of coarse and fine-labelled events using a multi-label approach in

1http://dcase.community/

two separate rankings (”coarse-grained” and ”fine-grained” predic-
tions).

In this paper, the authors present a deep Convolutional Neural
Network (CNN) using data augmentation techniques meant to pre-
dict the presence probability for each noise source in the given 10-s
audio snippets. The presented system in this paper used a basic net-
work with several data augmentation techniques using both coarse
and fine-level annotations to predict the presence probability at both
levels in the same network.

In Section 2, a description of the task and the given dataset are
described. In Section 3, our approach to address the problem is
described, detailing both the used model and the applied data aug-
mentation techniques. Finally, in Section 4, the prediction results of
the system are explained.

2. TASK DESCRIPTION

Machine listening systems are being used in other in other contexts
to monitor noise using sensor networks with the aim of mitigating
noise pollution [2, 3, 4]. In this task the SONYC [5] team provides
a realistic use case for the development and evaluation of innovative
machine listening systems.

In the challenge, a total of 23 noise ”tags”, each of them re-
ferring to a noise source, being many of them the cause of noise
complaints in New York City. The primary goal of the task is to de-
termine the probability of presence of each one of the 23 sources of
noise. However, this is an ambitious goal, as these tags differenti-
ate between very similar sounds, e.g. motorcycle, car and truck en-
gines, these are called ”fine-grained” annotations. A secondary goal
is defined in the UST task, which consists in predicting between 8
coarser tags, e.g. all sounds originated by an engine would be la-
belled in the ”engine” category, these are called ”coarse-grained”
annotations. Also, 6 other labels tagged as ”other/unknown” are
added in the fine labels belonging to 6 different coarser categories.
In Figure 1 the labelling taxonomy is detailed at both levels.

Two datasets are provided for the task, one for development, in-
cluding a training split and a validation split, and another for evalu-
ation, which is required to rank the submitted systems. The systems
proposed by the participants will be evaluated in two different rank-
ings, one for the coarse labels and another for the fine labels. The
classification metric used to evaluate and rank the participants is the
Area Under the Precision-Recall Curve (AUPRC) [6]. To compute
this curve, a threshold of confidence for every tag in every snippet
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Figure 1: Hierarchical taxonomy of urban sound tags in the
DCASE2019 Urban Sound Tagging task. Rectangular and round
boxes respectively denote coarse and fine tags3.

is fixed, resulting in a one-hot encoding of predicted tags. Then,
the total number of True Positives (TP), False Positives (FP), and
False Negatives (FN) is computed between prediction and consen-
sus ground truth over the entire evaluation dataset. The predictions
of the system should be submitted in a Comma-Separated Values
(CSV) file, where the filename of the audio in the evaluation dataset
indexed with the coarse-level and fine-level predictions.

2.1. Dataset

The organizers provide two datasets, one for development and the
other for evaluation. Both the datasets contain recording excerpts
of 10 seconds, the development ones include annotations and the
evaluation ones do not only include the raw audio. The development
dataset contains a train split of 2351 recordings and a validate split
of 443 recordings, making a total of 23510 seconds for the training
and 4430 seconds for the validation split. The annotations in the
development dataset include:

• Split: Train or validate
• Sensor ID: The ID of the sensor the recording is from. These

have been anonymized to have no relation to geolocation.
• Audio Filename: The filename of the audio recording
• Annotator ID: The anonymous ID of the annotator.
• Fine-level Presence: Columns of this form indicate the pres-

ence of fine-level class: 1 if present, 0 if not present.

Figure 2: The VGG-19 model has a total of 19 layers, including
convolutions and fully-connected.

• Coarse-level Presence: Columns of this form indicate the
presence of a coarse-level class: 1 if present, 0 if not present.

• Fine-level Proximity: Columns of this form indicate the prox-
imity of a fine-level class according to the annotators. If
present, it has three levels: near, far, notsure.

The evaluation dataset includes 204 audios of 10 s each without
annotations. The participants in the UST are asked to predict the
probability of each coarse and/or fine-level class and to save the
filenames with the probabilities in a CSV file.

3. CNN-BASED APPROACH AND MODEL
ARCHITECTURE

The authors propose a deep convolutional neural network using data
augmentation techniques (de-emphasis, compression and mix-up)
based on the Visual Geometry Group (VGG) architecture [7].

Firstly, the 10-s audios are transformed on-the-fly using a de-
emphasis4 and a compression filter in random factors to generate
different similar audios at every training epoch. After that, the audio
is mixed with another random 10-s audio of the training split using
a random value to mix up both audios in different proportions. The
hot-encoding labels are also added up using the same factor and
a threshold at a hearing level is applied to get the binary one-hot
encoding of the audio again.

After that, the Mel spectrogram [8] of the audio is computed
with 128 filters for the whole 10-s audio snippet. This is the input
of the VGG-based model, a deep CNN that uses small 3x3 convo-
lutional filters.

Both coarse and fine-grained annotations are used as input
classes for the mode. In order to predict both labellings, it com-
putes one loss function for each level, in order to train both coarse
and fine-levels equally. The model, based on the VGG-19 archi-
tecture [7] is depicted in Figure 2 where the layers of the model
are detailed in order, number and size. Also, the model output size
is 37, belonging to 8 coarse labels and 29 fine labels (23 defined
and 6 other/unknown). The loss function of the model is a Sigmoid
combined with the Binary Cross-Entropy to obtain more numerical
stability 5. The model is trained with an Stochastic Gradient De-

3http://dcase.community/challenge2019/task-urban-sound-tagging
4http://www.fon.hum.uva.nl/praat/manual/Sound Filter de-

emphasis .html
5https://pytorch.org/docs/stable/nn.html#bcewithlogitsloss
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Layer (type) Output Shape Param. Number
InstanceNorm2d-1 [-1, 1, 128, 1001] 0
MelSpectrogram-2 [-1, 1, 128, 1001] 0
InstanceNorm2d-3 [-1, 1, 128, 1001] 0
Conv2d-4 [-1, 64, 128, 1001] 640
BatchNorm2d-5 [-1, 64, 128, 1001] 128
ReLU-6 [-1, 64, 128, 1001] 0
MaxPool2d-7 [-1, 64, 64, 500] 0
Conv2d-8 [-1, 128, 64, 500] 73,856
BatchNorm2d-9 [-1, 128, 64, 500] 256
ReLU-10 [-1, 128, 64, 500] 0
MaxPool2d-11 [-1, 128, 32, 250] 0
Conv2d-12 [-1, 256, 32, 250] 295,168
BatchNorm2d-13 [-1, 256, 32, 250] 512
ReLU-14 [-1, 256, 32, 250] 0
Conv2d-15 [-1, 256, 32, 250] 590,08
BatchNorm2d-16 [-1, 256, 32, 250] 512
ReLU-17 [-1, 256, 32, 250] 0
MaxPool2d-18 [-1, 256, 16, 125] 0
Conv2d-19 [-1, 512, 16, 125] 1,180,160
BatchNorm2d-20 [-1, 512, 16, 125] 1,024
ReLU-21 [-1, 512, 16, 125] 0
Conv2d-22 [-1, 512, 16, 125] 2,359,808
BatchNorm2d-23 [-1, 512, 16, 125] 1,024
ReLU-24 [-1, 512, 16, 125] 0
MaxPool2d-25 [-1, 512, 8, 62] 0
Conv2d-26 [-1, 512, 8, 62] 2,359,808
BatchNorm2d-27 [-1, 512, 8, 62] 1,024
ReLU-28 [-1, 512, 8, 62] 0
Conv2d-29 [-1, 512, 8, 62] 2,359,808
BatchNorm2d-30 [-1, 512, 8, 62] 1,024
ReLU-31 [-1, 512, 8, 62] 0
MaxPool2d-32 [-1, 512, 4, 31] 0
Linear-33 [-1, 4096] 260,050,944
ReLU-34 [-1, 4096] 0
Dropout-35 [-1, 4096] 0
Linear-36 [-1, 4096] 16,781,312
ReLU-37 [-1, 4096] 0
Dropout-38 [-1, 4096] 0
Linear-39 [-1, 37] 151,589
VGG-40 [-1, 37] 0

Table 1: VGG-based model architecture

scent (SGD) optimizer [9] that drops the learning rate periodically
given a patience period where the loss is not reduced.

Finally, the evaluation dataset is given to the model and a sig-
moid function is applied to obtain the probability of the predictions.
These are saved into a CSV file to collect the results for the chal-
lenge rankings.

Concerning the implemented approach, a summary of our
model is given in Table 1, where the parameters used in each layer
are detailed, following the same structure as Figure 2. 286,208,677
trainable parameters are used by the model occupying a total of
1091.90 MB, and a total estimated GPU memory of 1500 MB is
used to train the model. The source of the project is available on-
line 6.

6https://bitbucket.org/ferranorga/dcase19

4. RESULTS

The results of the model have been evaluated on the validate split
of the development dataset for the ”coarse-grained” and the ”fine-
grained” challenge with the following values:

• AUPRC Coarse: 78.3%
• AUPRC Fine: 58.2%
• Accuracy Coarse: 86.7%
• Accuracy Fine: 92.0%
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