Detection and Classification of Acoustic Scenes and Events 2019

Challenge

AUDIO TAGGING WITH CONVOLUTIONAL NEURAL NETWORKS
TRAINED WITH NOISY DATA

Technical Report

Fabian Paischer', Katharina Prinz">

"nstitute of Computational Perception, Johannes Kepler University, Linz, Austria
2 Austrian Research Institute for Artificial Intelligence, Vienna, Austria
paischer101 @gmail.com, katharina.prinz@ofai.at

ABSTRACT

This report is a description of our submission to the 2019 DCASE
Challenge, Task 2. The task at hand is to predict one or more audio-
tags, out of the 80 available tags, for the audio clips of different
lengths, originating from two different datasets. For training, a to-
tal number of 4970 audio clips is provided with trustworthy labels,
whereas 19815 samples contain a substantial amount of label noise
with unknown noise ratio. To tackle this task, we propose two dif-
ferent convolutional neural network (CNN) architectures trained on
different features to capture different aspects of the data. Stochastic
Weight Averaging is used in order to improve generalisation. By
averaging over the predictions of all five networks, we obtain an
ensemble that provides us with the likelihood of 80 different labels
being present in an input audio clip. On the unseen data of the
Public Kaggle Leaderboard, our system reaches a Label Weighted
Label Ranking Average Precision (Lwlrap) of 0.722.

Index Terms— Audio Tagging, Ensemble, Convolutional Neu-
ral Networks, Noisy Labels, Stochastic Weight Averaging

1. INTRODUCTION

Modern machine learning tasks often require a large amount of data
to train. While manual labels are not a scalable way to obtain
ground-truth, various sources, e.g. websites, provide information
that can be used to infer labels automatically. These, however, can
contain a significant amount of noise. The “Freesound Audio Tag-
ging 2019 Challenge”, carried out as Task 2 of this year’s DCASE
Challenge [1], tackles exactly this problem, and provides, next to
a smaller curated dataset, also a larger amount of audio samples
with noisy annotations [2]. Contrary to Task 2 of the 2018 DCASE
Challenge [3], the number of possible audio tags to be predicted
rose from 41 to 80 potential labels. In addition to that, multiple
labels can be predicted for a single audio clip.

In this technical report, we describe our submission to Task 2
of the 2019 DCASE Challenge. The following sections contain a
description of our audio data preprocessing, the architectures of the
convolutional neural networks (CNNs) which we use for the task,
and information about the basic training procedure.

2. AUDIO DATA

2.1. Datasets

Curated and noisy audio clips provided by the 2019 DCASE
Challenge [1] originate from two different sources, namely the

Freesound dataset and the Yahoo Flickr Creative Commons 100M
dataset. The 4970 curated and 19815 noisy clips all have 0.3 to 30
seconds length and are annotated with one or multiple of 80 differ-
ent labels. For each of the labels, we have around 80 % of noisy,
and 20 % of curated audio clips available.

2.2. Audio Preprocessing

Instead of directly using raw audio data for the training of our sys-
tem, we preprocess each available clip. More precisely, we com-
pute variations of Mel-spectrograms and constant Q-power spectra.
Prior to the transformation into the frequency domain, we remove
silent parts within the audio data with silence clipping using the
SoX toolbox. After this step, the features with five different sets of
parameters are extracted.

The first kind of feature, subsequently denoted by mel_n, is ex-
tracted by applying a Short Time Fourier Transform (STFT) to the
resampled audio data with a sampling rate of 32 kHz. The STFT
uses a hop length of 192, and a Fast Fourier Transform (FFT) win-
dow length of 1024. Finally, a mel-scaled filter bank is used to
obtain 128 frequency-bins from the logarithmic STFT, before the
spectrogram is normalised.

Two other features, mel and mel_weighted, are computed sim-
ilarly. The differences here are the parameters of the STFT with a
sampling rate of 44.1 kHz, an FFT window length of 2048 and a
hop size of 512. Instead of applying the mel-scaled filter bank to
the logarithmic STFT, mel_weighted is perceptually weighted?.

The last two features, denoted by cqt_weighted and
cqt_n_weighted, are constant Q-power spectra. After silence clip-
ping, a constant Q-transform is applied with two sets of parameters.
For cqt_weighted, the sampling rate is 44.1 kHz, the hop length
equals to 512, and the number of frequency bins is 128. The con-
stant Q-transform for cqt_n_weighted uses a sampling rate of 32
kHz, a hop length of 192, and a number of frequency bins equal to
84. After the transformation into the frequency domain, the spectra
are perceptually weighted and normalised.

In order to simplify the processing of audio data with differ-
ent lengths, we fix the number of frames for all spectrograms to
be 2784. Shorter features are padded by repeating the spectro-
gram; longer features, on the other hand, are simply clipped. The
fixed length is chosen based on frequently occurring feature lengths.

"http://sox.sourceforge.net/
2https://librosa.github.io/librosa/generated/
librosa.core.perceptual_weighting.html

Detection and Classification of Acoustic Scenes and Events 2019

s000

2500

Lenghs

Figure 1: Lengths of Mel spectrograms (mel).

Figure 1 shows, as an example, the histogram of Mel-spectrogram
lengths.

Instead of using the entire spectrogram as an input to audio tag-
ging models, we work with windows having a frame length of 348,
and train a network on half-overlapping windows (i.e. with hop size
of 174). This means that we do not obtain a single, but rather mul-
tiple outputs of a model for one audio clip. The final prediction of
a model is the average prediction of all windows within a clip.

3. MODEL ARCHITECTURES

For our audio tagging system, previously described audio features
are used as an input to two different CNN architectures. The
first one is an adaptation of the 2018 DCASE Challenge’s second
place [4]. The second architecture is a CNN with fewer layers and
average-pooling (in contrast to the max-pooling layers in previous
model).

3.1. The Max-Pooled CNN

Figure 2 shows the architecture of the adapted CNN of Dorfer and
Widmer [4]. It consists of 5 X 5,3 x 3 and 1 x 1 convolutions
with Rectified Linear Units (ReLUs), followed by batch normali-
sation and max-pooling layers. For regularisation, dropout is used.
The last layers of the CNN consist of a global pooling layer, which
averages over the first dimension of the feature map, and maximises
over the second, and finally a dense layer. In order to obtain a final
prediction that describes the likelihood of each label being present
in an audio clip, a softmax activation function is used.

3.2. The Average-Pooled CNN

The second CNN which we trained is visualised in Figure 3. Be-
sides its depth, the main difference is the prevalent usage of average-
pooling as opposed to max-pooling between convolutional layers.
The amount of hidden layers in this network is reduced in order to
obtain a smaller receptive field in the last layer for regularisation, al-
lowing the network to focus on local parts of the input, as discussed
in [5]. Also for this network, batch normalisation and dropout are
used.

Challenge

Input 1 x 348 x 128 (84)

5 x 5 Conv(stride = 2, activations = relu, filters = 64), BN()
3 x 3 Conv(stride = 1, activations = relu, filters = 64), BN()
2 x 2 MaxPooling(stride = 2)

Dropout(0.3)

3 x 3 Conv(stride = 1, activations = relu, filters = 128), BN()
3 x 3 Conv(stride = 1, activations = relu, filters = 128), BN()
2 x 2 MaxPooling(stride = 2)

Dropout(0.3)

3 x 3 Conv(stride = 1, activations = relu, filters = 256), BN()
Dropout(0.3)

3 x 3 Conv(stride = 1, activations = relu, filters = 256), BN()
Dropout(0.3)

3 x 3 Conv(stride = 1, activations = relu, filters = 384), BN()
Dropout(0.3)

3 x 3 Conv(stride = 1, activations = relu, filters = 384), BN()
2 x 2 MaxPooling(stride = 2)

Dropout(0.3)

3 x 3 Conv(stride = 1, activations = relu, filters = 512), BN()
3 x 3 Conv(stride = 1, activations = relu, filters = 512), BN()
1 x 2 MaxPooling(stride = (1, 2))

Dropout(0.3)

3 x 3 Conv(stride = 1, activations = relu, filters = 512), BN()
3 x 3 Conv(stride = 1, activations = relu, filters = 512), BN()
1 x 2 MaxPooling(stride = (1, 2))

Dropout(0.3)

3 x 3 Conv(stride = 1, activations = relu, filters = 512), BN()
Dropout(0.5)

1 x 1 Conv(stride = 1, activations = relu, filters = 512), BN()
Dropout(0.5)

GlobalPooling()

Dense(80)

Softmax()

Figure 2: Architecture of max-pooled CNN, adapted from [4].

4. TRAINING PROCEDURE

4.1. Setup and Integration of Noisy Data

As a way to reduce the possibility of over-fitting and memorisation
of corrupt labels, mixup-data augmentation [6] with « = 0.3 is
applied in our training procedure. To learn the parameters of any
network, we use a categorical cross-entropy loss function and an
Adam optimiser with a starting learning rate of 0.001. In addition
to that, we use a linear learning rate decay after 50 epochs for the
max-pooled CNN; for the average-pooled CNN, on the other hand,
we drop the learning rate by a factor of 10 after 150 epochs. Each
model in our final audio tagging system is training for 200 epochs
with a mini-batch size of 7.

As we do not know the exact amount of noise present in the
non-curated audio clips, the network is trained on solely curated
data for the majority of epochs. Every fifth epoch we switch to the
noisy dataset, and train on a randomly selected subset of the noisy
data with decreased learning-rate for an equal amount of steps per
epoch. Note here, that the network is thus not seeing the entire set
of noisy samples in one such epoch.

4.2. Stochastic Weight Averaging

To further improve the generalisation of our audio tagging system,
we use stochastic weight averaging (SWA) [7] for our average-
pooled CNN architecture. The original SWA recomputes the batch-
norm statistics in every forward pass, in order to match the new
averaged weights of the SWA model. However, due to the compu-
tational complexities, we skip this step and solely average over the
weights of the last 15 epochs instead.

Detection and Classification of Acoustic Scenes and Events 2019

Input 1 x 348 x 128
5 x 5 Conv(stride = 2, activations = relu, filters = 64), BN()
3 x 3 Conv(stride = 1, activations = relu, filters = 64), BN()
2 x 2 AveragePooling(stride = (2, 2))
Dropout(0.3)

3 x 3 Conv(stride = 1, activations = relu, filters = 128), BN()
3 x 3 Conv(stride = 1, activations = relu, filters = 128), BN()
2 x 3 AveragePooling(stride = (2, 3))
Dropout(0.3)

3 x 3 Conv(stride = 1, activations = relu, filters = 256), BN()
3 x 3 Conv(stride = 1, activations = relu, filters = 256), BN()
2 x 3 AveragePooling(stride = (2, 3))
Dropout(0.3)

1 x 1 Conv(stride = 1, activations = relu, filters = 512)
BN(), Dropout(0.5)

1 x 1 Conv(stride = 1, activations = relu, filters = 80)
GlobalPooling()

Softmax()

Figure 3: Architecture of the CNN using average pooling.

feature ‘ architecture ‘ loss ‘ Iwlrap
mel avg-pooled | 1.384 | 0.825
mel_weighted avg-pooled | 1.437 | 0.817
mel_n max-pooled | 0.168 | 0.835

cqt_n_weighted | max-pooled | 0.138 | 0.776
Table 1: Average 4-fold cross validation loss and lwlrap for four
trained CNNss, contained in every of our three ensembles.

4.3. 4-Fold Cross-Validation

In addition to the evaluation the public test-set offers, we use a 4-
fold cross validation (CV). To set this up, the curated data is split
into four folds with comparable distributions over the different la-
bels. For training, three folds of curated, as well as the noisy data
are used; the remaining fold, on the other hand, serves as validation
set. As every fold is used exactly once for evaluation, we end up
training four models, which we combine for our final submission
by averaging over their respective predictions.

4.4. Ensembles of Final Submissions

With our final audio tagging system, we aim to obtain one prediction
that describes the likelihoods of 80 labels being present in a given
audio clip. We create an ensemble of different models by averaging
over their respective predictions for a given audio clip.

Table 1 shows four models with their respective features, archi-
tectures, as well as the average loss and label weighted label rank-
ing average precision (Iwlrap) over the four folds in our CV setup.
These four models are used in every ensemble of our three submis-
sions.

The first submission is an ensemble of five networks. In ad-
dition to the four models from Table 1, we include a model with
the avg-pooled architecture trained on cqr_weighted features. This
system achieves our highest lwlrap of 0.722 on the public Kaggle
leaderboard®.

The second ensemble, with a lwlrap of 0.721 on the pub-
lic leaderboard, combines six different networks. More precisely,
the five models from submission 1 are enhanced with a fully-
convolutional version of the max-pooled architecture (Figure 3).

Challenge

submission ‘ feature ‘ architecture ‘ loss ‘ Iwlrap
1,3 cqt_weighted avg-pooled 1.865 | 0.825
2 mel_n_weighted | max-pooled 2475 | 0.724
3 mel_n max-pooled* | 1.382 | 0.889

Table 2: Additional CNNs that complete the ensembles for all three
submissions.

For training we use the mel_n features.

Finally, the last submission consists of the four networks in Ta-
ble 1. Additionally, a model with a max-pooled architecture is fed
with a perceptually weighted version of the mel_n features. On the
public leaderboard, this ensemble results in a Iwlrap of 0.715.

Table 2 summarises the additional models with their average
performance during cross validation for each of the three submis-
sions.

5. CONCLUSION

In this report, we proposed an ensemble of multiple CNNs as an au-
dio tagging system that provides us with a prediction of how likely
it is, that any one of 80 different audio tags is present in a given au-
dio clip. For training we have audio samples with curated, as well
as noisy ground-truth labels available. Every fifth epoch, we train
on a fraction of the noisy data. Furthermore, we work with different
Mel-spectrograms and constant Q-transform spectra, and two dif-
ferent CNN architectures. Mixup-data augmentation and stochastic
weight averaging are two methods we use to increase generalisation.
Our best ensemble with respect to the public Kaggle leaderboard
combines five networks and achieves a Iwlrap of 0.722.

6. ACKNOWLEDGMENT

Thanks to everyone at the Institute of Computational Perception at
the JKU, for the supervision, discussions, advice and also the com-
putational resources. In particular, thanks to Andreas Arzt, Hamid
Eghbal-zadeh, Khaled Koutini, Rainer Kelz and Gerhard Widmer.

This work is supported by the Austrian National Science Foun-
dation (FWF, P 31988).

7. REFERENCES

[1] http://dcase.community/challenge2019/task-audio-tagging.

[2] E.Fonseca, M. Plakal, F. Font, D. P. W. Ellis, and X. Serra, “Au-
dio tagging with noisy labels and minimal supervision,” 2019.

[3] http://dcase.community/challenge2018/index.

[4] M. Dorfer and G. Widmer, “Training general-purpose au-
dio tagging networks with noisy labels and iterative self-
verification,” DCASE2018 Challenge, Tech. Rep., September
2018.

[5] K. Koutini, H. Eghbal-zadeh, M. Dorfer, and G. Widmer, “The
Receptive Field as a Regularizer in Deep Convolutional Neural
Networks for Acoustic Scene Classification,” in Proceedings
of the European Signal Processing Conference (EUSIPCO), A
Coruifia, Spain, 2019.

[6] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,

3nttps://www.kaggle.com/c/freesound-audio-tagging-2019,/ ‘mixup: Beyond empirical risk minimization,” arXiv preprint

leaderboard

arXiv:1710.09412,2017.

Detection and Classification of Acoustic Scenes and Events 2019 Challenge

[7] P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G.
Wilson, “Averaging weights leads to wider optima and better
generalization,” arXiv preprint arXiv:1803.05407, 2018.

