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ABSTRACT

In this technical report, we describe our acoustic scene classifica-
tion algorithm submitted in DCASE 2019 Task 1a. We focus on
various pre-processed features to categorize the class of acoustic
scenes using only stereo microphone input signal. In the front-
end system, the pre-processed and spatial information are extracted
from the stereo microphone input. Residual network, subspectral
network, and conventional convolutional neural network (CNN) are
used for back-end systems. Finally, we ensemble all of the models
to take advantage of each algorithm. By using proposed systems,
we achieved a classification accuracy of 80.4%, which is 17.9%
over than the baseline system.

Index Terms— DCASE 2019 challenge, acoustic scene classi-
fication, convolutional neural network, ensemble

1. INTRODUCTION

Recently, most of the people carry their own smart devices like mo-
bile phone, smartwatch, and tablet PCs. Those smart devices have
one or more microphones to hear users voice. However, those mi-
crophones can hear not only the human voice but also environmental
sounds. Thus, when we analyze recorded sounds of smart devices,
which can automatically recognize acoustic scenes and events, even
if users do not listen to the surrounding sound. Acoustic scenes
and event detection and classification can be helpful in the situation
when visual information is hard to be achieved. Also, it can help
people with hearing impairment by giving them proper acoustic in-
formation.

Unfortunately, it is difficult to detect scenes and events, because
the field of sounds is sensitive to environments. Various sounds
can be transformed by changing time and frequency domain prop-
erties in nature. Even though, as microphones have various speci-
fications, sounds from various microphones show plenty of differ-
ent properties. To overcome these problems, deep learning tech-
nologies are applied in various ways. Yuma Sakashita proposed
an ensemble of spectrograms based on adaptive temporal divisions
[1], and Matthias Dorfer et al. suggested fully convolutional neu-
ral networks (CNNs) with I-vectors [2]. They took top ranks on
DCASE2018 Task 1a with their proposed deep learning technolo-
gies.

In DCASE 2019, Task 1a aims to classify acoustic scenes
recorded in various locations. All data are recorded with the same
devices to guarantee the same specification of microphones. How-
ever, the training set and test set is divided by recording locations
from each city. With this database, we extract various features to

achieve the best performance. The first feature is log mel spectro-
gram from mono, harmonic, and percussive signals. The second
one is low-frequency spectrograms, and the third feature is log mel
spectrogram from dereverberated signal. We also use the nearest
neighboring filters, the generalized cross-correlation - phase trans-
form (GCC-PHAT), which is well-used in deep beamforming and
interaural time difference (ITD) as feature vectors. The last features
are log mel features of average and subtracted signals from 2 chan-
nels. With those features, we build 3 layers CNNs and subspectral
network to get 8 models of 8 combinations of features and networks.
By averaging 8 models, we can get the final ensemble model. The
following sections are organized to explain the proposed deep learn-
ing system.

2. PROPOSED SYSTEM

In this section, we introduce our acoustic scene classification (ASC)
system. The system consists of front-end systems, back-end sys-
tems, and data augmentation. In the front-end systems, robust fea-
tures for ASC are extracted from the unprocessed and pre-processed
stereo microphone input signal. Then, in the back-end systems, the
proposed neural network model predicts a proper class of acoustic
scenes. The proposed ASC system is depicted in Fig. 1.

2.1. Front-end Systems

In this section, we will describe the pre-processed features and spa-
tial information. These are extracted from the stereo microphone in-
put signal by using harmonic-percussive sound separation (HPSS),
dereverberation, low pass filtering, etc. The pre-processed features
are known helpful to reduce the mismatch between training and test
set. Also, spatial information can be used to classify acoustic scenes
which have a point sound source or not.

First, we perform dereverberation and denoising to overcome
the mismatch between the trained model and unseen data. Rever-
beration is caused by the reflection of sound waves. Since each of
acoustic scenes has different reverberation property, reverberation is
an import clue for ASC. We use log mel spectrogram of mono, har-
monic and percussive component of the dereverberated signal for
ASC. For dereverberation, we use NARA-WPE, a python package
for weighted prediction error dereverberation [3]. Also, we perform
the nearest neighboring filtering for denoising. In DCASE 2018
challenge, the nearest neighbor filters were applied for ASC to em-
phasize and smooth similar patterns of sound events in a scene [4].
We apply both non-local median filter and means filter to chroma-
gram features, which closely relates to the twelve pitches that can
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Figure 1: The block diagram of the proposed ASC system

capture harmonic and melodic characteristics. Chromagram, non-
local median filtered and means filtered chromagram are used for
input features.

Second, we perform HPSS, which is known effective for ASC.
In DCASE 2017, Han et al. reported that HPSS has shown greater
performance than original signal [5]. Many acoustic sounds are
mixtures of harmonic and percussive signals. Harmonic signals are
sparse in frequency and percussive signals contain localized infor-
mation. Therefore, by decomposing the original signal to the har-
monic and percussive component, we can get an import factor for
classifying acoustic scenes. After separating a harmonic and per-
cussive component from signals, we extract log mel spectrogram to
extract feature vectors.

Third, we use spatial information to improve ASC performance
by using stereo microphone input characteristics. To use binaural
characteristics, we use inter-channel information of the left and the
right channel [6]. The average and subtraction of 2 channels are an
important clue for assuming the dominant component of the scene.
It was shown that binaural information could help to classify acous-
tic scenes in DCASE 2017 challenge [5]. We use log mel spectro-
gram of the inter-channel information as feature vectors to improve
classification accuracy. In [7], beamforming weights are predicted
by deep neural networks with GCC-PHAT features and shown sat-
isfactory results. Since GCC allows neural networks to predict the
direction of arrival (DOA) reliably, it can also be helpful for pre-
dicting acoustic scenes reliably. We use the center 128 elements of
GCC-PHAT values for feature vectors. Besides, ITD for each frame
is concatenated with GCC-PHAT and used for input feature vectors.

Lastly, lower bands of the spectrogram are used to classify
scenes. After examining the spectrogram of each of the scenes,
we found that most of the import components for ASC exist be-
low 3000 Hz. So we use lower bands of the spectrogram as feature
vectors to examine specifically below 3000 Hz. Examining lower
spectrogram in detail helps to classify scenes correctly.

2.2. Back-end Systems

With those front-end systems, we build 3 types of CNNs to train
various pre-processed feature vectors. Conventional CNN, sub-
spectralnet, and residual network are used for back-end systems.
First, we use conventional 3 layers CNN, which is described in Ta-
ble 1, to train features like images. In DCASE 2018, CNNs were
used for ASC and events detection and has shown more expectional
performance than convolutional recurrent neural network (CRNN)
and other structures. Batch normalization is also applied to im-
prove the performance and stability of the system. Second, we ap-
ply subspectralnet, sub-spectrograms based CNN architecture for
ASC, which is published in ICASSP 2019 [8]. To capture more
enhanced features, subspectralnet divide the spectrogram into sev-
eral sub-spectrograms. We divide 200 dims of log mel spectro-
gram with 30 sub-spectogram sizes and 10 mel bin hop size. Then,
each sub-spectrogram is feedforward to 3 layers CNNs and con-
catenated to a global classifier to determine the scene. Each sub-
spectrogram is classified using their specific sub-band information
and the global classifier determines the scene by discerning infor-
mation at the global level. The structure of sub-networks is almost
the same as the conventional CNN, which has 3 convolutional lay-
ers, described in Table 1. The global classifier consists of 2 dense
layers which have 1024 and 10 units. Third, we use the residual
network to train high-level features effectively [9]. Residual learn-
ing enables training deep CNN by introducing shortcut connections
F (x) + x, which mean their outputs are added to the outputs of the
stacked layers. We use for ASC has 8 convolutional layers and two
dense layers of the residual network. All convolutional layers have
the kernel size of (3,3) and filter sizes are set to (32, 32, 64, 64, 128,
128). Dense layers are the same as the conventional CNN.

2.3. Data Augmentation

To improve performance in unknown condition, data augmentation
is important to increase the generality of the system. We perform
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Table 1: The architecture of conventional CNN
Layer Description

Conv2D kernel size = (7, 7), # of filters = 32
BatchNormalization batch size = 128

Activation ReLU
Maxpool2D pool size = (5, 5)

Conv2D kernel size = (7, 7), # of filters = 64
BatchNormalization batch size = 128

Activation ReLU
Maxpool2D pool size = (2, 10)

Conv2D kernel size = (7, 7), # of filters = 128
BatchNormalization batch size = 128

Activation ReLU
Maxpool2D pool size = (2, 2)

Dense # of units = 1024, activation = ReLU
Dense # of units = 10, activation = Softmax

mixup for data augmentation [10]. Since multiple sounds occur si-
multaneously in a real-world environment, the mixup augmentation
scheme is appropriate for classifying the real-world sound scenes.
Mixup augmented data is obtained as follows:

x̂ = λx1 + (1− λ)x2, (1)
ŷ = λy1 + (1− λ)y2 (2)

where (x1, y1) and (x2, y2) are two acoustic scenes randomly cho-
sen from the training data and λ ∈ (0, 1). λ is acquired from the
beta distribution β(0.1, 0.9). One-hot labels are added with λ, la-
bels of augmented data are represented as multi events labels.

3. EXPERIMENTS AND RESULTS

All audio samples were set to 48kHz sampling rate and 24-bit res-
olution. We performed two kinds of normalization methods, peak
normalization, and standard normalization. Peak normalization was
performed before the feature extraction to adjust the signal based on
the highest sound level. After the feature extraction, features were
normalized using standardization, which makes features have zero-
mean and unit variance. Features are extracted with frame size 40
ms and hop size 20 ms in submission 1 and 2 and frame size 40 ms
and hop size 15 ms with submission 3 and 4. Log mel spectrogram
features are extracted with a bin size of 128 and 200 according to
the models they are forwarded to. Our submission systems were
trained with all development data set and among the training data,
20% of the data is augmented data. We used python deep learning
library keras to train and test CNNs [11]. ADAM optimizer was
used with an initial learning rate of 0.001 and a mini-batch size of
64. Training epoch was first set to 200, but if validation accuracy
does not increase over 30 epochs, then we stopped the training. Af-
ter all the training was finished, we chose the model which has the
highest accuracy among all epochs. Table 1 and 2 show the result
of our algorithms.

4. SUBMISSION

We used mean probabilities to ensemble the multiple models. We
submitted 4 results for DCASE 2019 Task 1a. Submission 1 is an
ensemble of 8 systems, which described in Table 2. Submission 2
is an ensemble of 21 systems. In contrast with submission 1, all

Table 2: Accuracy for each system

Front-end system Back-end system Accuracy
Baseline 62.5

HPSS (Log-mel spec) Conventional CNN 74.2
HPSS (Log-mel spec) SubspectralNet 76.0
HPSS (Log-mel spec) ResNet 71.9

Dereverbed & HPSS (Log-mel spec) Conventional CNN 74.9
Low frequncy spectrogram Conventional CNN 69.7

Nearest neighbor filters Conventional CNN 44.8
Inter-channel feautres Conventional CNN 72.1
GCC-PHAT & ITD Conventional CNN 52.2

Ensemble (Proposed system) 80.4

Table 3: Class-wise accuracy for the development dataset

Class Baseline Proposed
Airport 48.4 79.5

Bus 62.3 88.6
Metro 65.1 78.6

Metro station 54.5 75.2
Park 83.1 92.0

Public square 40.7 68.2
Shopping mall 59.4 77.0

Street pedestrian 60.9 74.4
Street traffic 86.7 91.8

Tram 64.0 79.6
Average 62.5 80.4

features are trained separately. For example, mono, harmonic and
percussive components of log mel spectrogram are trained sepa-
rately, and we obtain 3 models. Also, there are gcc-phat model and
ITD model separately, which was one inter-channel features model
in submission 1. In this way, we train 21 models. Submission 3 and
submission 1 are pretty much the same in algorithms, except sub-
mission 3 has hop size of 15 ms. Also, submission 4 and submission
2 are pretty much the same in algorithms, except submission 3 has
a hop size of 15 ms.

5. CONCLUSION

In this paper, we proposed ensemble systems of convolutional neu-
ral networks with various pre-processed features for DCASE Task
1a. The systems consist of front-end systems and back-end systems.
We ensembled those systems to improve performance and achieved
a classification accuracy of 80.4%, which is 17.9% over than the
baseline system.



Detection and Classification of Acoustic Scenes and Events 2019 Challenge

6. REFERENCES

[1] Y. Sakashita and M. Aono, “Acoustic scene classification by en-
semble of spectrograms based on adaptive temporal divisions,”
in DCASE2018 Challenge, 2018.

[2] M. Dorfer et al., “Acoustic Scene Classification with Fully
Convolutional Neural Networks and I-Vectors,” in DCASE2018
Challenge, 2018.

[3] L. Drude, J. Heymann, C. Boeddeker, and R. Haeb-Umbach,
“NARA-WPE: A Python package for weighted prediction error
dereverberation in Numpy and Tensorflow for online and offline
processing,” in ITG Fachtagung Sprachkommunikation, 2018,
pp. 1-5.

[4] T. Nguyen and F. Pernkopf, “Acoustic scene classification using
a convolutional neural network ensemble and nearest neighbor
filters,” in DCASE2018 Challenge, 2018.

[5] Y. Han, J.Park and K. Lee, “Convolutional neural networks
with binaural representations and background subtraction for
acoustic scene classification,” in DCASE2016 Challenge, 2017.

[6] K. Tan, X. Zhang, and D. Wang, “Real-time Speech Enhance-
ment Using an Efficient Convolutional Recurrent Network for
Dual-microphone Mobile Phones in Close-talk Scenarios,” in
Proc. IEEE ICASSP, 2019, pp. 5751-5755.

[7] X. Xiao et al., “Deep beamforming networks for multi-channel
speech recognition,” in Proc. IEEE ICASSP, 2016, pp. 5745-
5749.

[8] S. S. R. Phaye, E. Benetos, and Y. Wang, “SubSpectralNet –
Using Sub-spectrogram Based Convolutional Neural Networks
for Acoustic Scene Classification,” in Proc. IEEE ICASSP,
2019, pp. 825-829.

[9] K. He, X. Zhang, S. Ren, and J. Sun “Deep Residual Learning
for Image Recognition,” in arXiv:1512.03385, 2015.

[10] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-
Paz, “mixup: Beyond Empirical Risk Minimization,” in
arXiv:1710.09412, 2017.

[11] F. Chollet et al., “Keras,” http://keras.io, 2015.


