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ABSTRACT

We trained a model for multi-label audio classification on Task 5
of the DCASE 2019 Challenge [1]. The model is composed of a
preprocessing layer that converts audio to a log-mel spectrogram,
a VGG-inspired Convolutional Neural Network (CNN) that gen-
erates an embedding for the spectrogram, the pre-trained VGGish
network [2] that generates a separate audio embedding, and finally a
series of fully-connected layers that converts these two embeddings
(concatenated) into a multi-label classification. This model directly
outputs both fine and coarse labels; it treats the task as a 37-way
multi-label classification problem. One version of this network did
better at the coarse labels (submission 1); another did better with
fine labels on Micro AUPRC (submission 2).

A separate family of CNNs models, one per coarse label, was
also trained to take into account the hierarchical nature of the labels
(submission 3), but the single model solution performed slightly
better.

Index Terms— audio, classification, CNN

1. INTRODUCTION

In our approach to audio event classification, we assessed two possi-
ble methods: creating and training a new model trained only on the
DCASE Task 5 Challenge dataset, or building a model that uses as
input an embedding vector generated by an external model trained
on a larger, different dataset. Both approaches have various advan-
tages and disadvantages. Creating a new model results in a model
trained for the specific sounds, environments, and sensors from the
dataset, which can potentially offer better precision, yet the limited
size of the dataset can reduce training success. Re-purposing a pre-
trained model such as VGGish, trained on AudioSet [2], has the
advantage of starting with a model that was trained on a large and
diverse dataset, but the disadvantage of disregarding input features
that might have been discarded by the VGGish model, reducing the
ability to capture nuanced distinctions between specific classes in
the DCASE Task 5 dataset.

Our approach combined the two approaches, in an attempt to
benefit from both AudioSet’s large dataset and the task-specific na-
ture of a custom model trained on raw input data. We created several
variants of the model in terms of the output classes predicted: a) all
37 labels; b) 29 “fine” labels from which we infer the 8 “coarse”
labels; or c) 8 “coarse” labels. We also created a hierarchical model
to attempt to make use of the extra information encapsulated in the
known hierarchical nature of the labels.

Figure 1: Input features for a sample input file. X-axis is time. a)
Log-mel spectrogram: 128 mel bins, 862 time bins. b) VGGish
embedding: 128 dimensions, 10 time bins.

In addition to experimenting with model variants, we also aug-
mented the dataset by adding background noise, pitch shifting, and
changing the volume. We also tried several approaches to learning
rate decays and warm restarts.

2. RELATED WORK

The general problem of machine listening is discussed in [3]. Much
existing work focuses on listening to human speech, but this task
focuses on primarily non-speech audio. A large weakly-labeled
dataset called AudioSet [2] was created to facilitate research in this
domain.

The authors of AudioSet also built an audio classification model
called VGGish, based on log-mel spectrograms and CNNs [2]. Sim-
ilarly, separate work used CNNs for classification of audio events,
along with data augmentation to improve training. The work in [4]
uses synthetic recordings involving multiple sound sources, where
multiple recordings have been combined algorithmically and then
processed further via frequency band amplification or attenuation.

This task involves category labels that are arranged in a hierar-
chy. The general problem of hierarchical classification is reviewed
in [5].
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3. FEATURE EXTRACTION

3.1. Data augmentation and spectrogram generation

To help the model generalize and to augment the dataset, each file
was subjected to pitch shifting, volume changing, and an addition
of background noise. After augmentation, each audio file was con-
verted into a log-mel spectrogram with 128 mel bins. The original
sample rate of 44.1 kHz was retained, resulting in each spectrogram
having 862 time bins. The VGGish features (128x10) from the pre-
trained AudioSet model were also generated for each input file. See
Figure 1 for a visualization.

3.2. Label choice

To assign labels to each example, we tried several configurations
that take into account the disagreement among human labelers. We
tried several different thresholds of agreement from 25 percent to 75
percent agreement yielding a positive value. We also tried assigning
labels as a float that represents the agreement among labelers. We
achieved the best results when we restricted positive labels to only
classes that had over 50 percent agreement from people who voted
on that particular class.

4. MODELS

To build our model, we began by feeding log-mel spectrogram val-
ues into a VGGish architecture, and then modified the architec-
ture parameters based on training results from the Task 5 dataset.
The VGGish architecture failed to improve past the first epoch—
possibly the model was overfitting due to the large number of layers
and the relatively small size of the dataset. By removing some con-
volutional layers and maxpool layers, the model would learn more
gradually and continue to improve after the first epoch.

In addition to removing layers, we found that altering the ker-
nel sizes improved training. The convolution layers are expressed
as convolution blocks in Table 1. The first convolution block has a
kernel size of 1x1, which was borrowed from ConvNet configura-
tions, although the 1x1 layers occur in later layers rather than the
first. [6] The third convolution block features a large and rectan-
gular (16x128) kernel size with a large stride and padding. Each
convolution block contains batch normalization and dropout at a
rate of 0.5. One maxpool layer follows the third convolution block.

4.1. CNN + VGGish

The results of our CNN model were unable to surpass the baseline
results, so we decided to merge the AudioSet-based VGGish em-
beddings into our trained model at the fully-connected layer level
(see Table 2). The output of our CNN model was 256 channels of 1
value (256x1)m while the VGGish embedding output was 128x10.
These outputs were flattened (to vectors of length 256 and 1280,
respectively) and concatenated to yield a 1536-dimensional vector
which was followed by three fully-connected layers that reduce the
dimensionality to 512, 256, and finally the desired number of out-
put classes. Batch normalization is applied to each fully-connected
layer, as is a dropout rate of 0.2. Adding the VGGish embeddings
improved our training results and allowed us to surpass the baseline
results for some metrics.

Figure 2: Hierarchical model.

4.2. Hierarchical

Because the class labels are given in terms of a known two-level
hierarchy, we built an alternative model that takes the label hier-
archy into account. Our model is similar to the ”Local classifier
per parent node” approach in [5]. A top-level model MC was built
that would predict probabilities for each of the eight “coarse” la-
bels. Two of the “coarse” labels (non-machinery-impact and
dog-barking-whining) only had a single associated “fine” la-
bel, so a prediction from the top-level model of one of these two
classes was hard-coded to generate the same probability of predic-
tion for the associated fine-label class. To handle fine-label predic-
tions for sound events in the other coarse categories, six individual
low-level models {MFi | COARSE = i}, 1 ≤ i ≤ 6 were trained
to classify the probability for each of the fine labels i, conditioned
on knowledge of the coarse class label for a particular example.
This resulted in a total of seven models; see Figure 2. Each of these
models had essentially the same structure, with the exception of the
number of nodes in the output layer.

Each fine-label classifier MFi was trained in the same way as
the coarse classifier MC (see Section 5). The dataset for each clas-
sifier was generated by simply extracting the subset of training data
where the coarse label was that expected for the fine-label classifier.
E.g., for the engine classifier, the data used for training consisted of
solely those examples where the coarse label was identified in the
ground truth as engine.

We constructed a working classification system from these
models as follows. First an unknown input example would be given
to the coarse-level classifier MC . Then, the coarse category with
the maximum output value would determine which model MFi to
run to determine the fine label output values. Finally, if any other
coarse categories were output with value > 0.5, the corresponding
models MFi would be run as well to generate additional possible
fine label classifications.

5. TRAINING TECHNIQUES

To train the model, we used an Adam optimizer [7] with a learn-
ing rate of 0.01. For the objective function, we used binary cross
entropy with logits loss, which combines the sigmoid function with
binary cross entropy. We also experimented with modifying the
loss function to give weight to classes based on their represen-
tation in the dataset. While fully weighting classes to offset the
dataset imbalance decreased the micro AUPRC scores, smooth-
ing the weights—such taking the tenth root of each value—helped
under-represented classes perform better and made a slight overall
improvement to the micro AUPRC scores.

For the training cycle, we monitored the micro AUPRC scores
of fine and coarse classes on the validation set and implemented
a modified form of warm restarts. [8] When coarse or fine mi-
cro AUPRC scores had not improved by a stagnation threshold, the
learning rate was reduced. This process was repeated until a mini-



Detection and Classification of Acoustic Scenes and Events 2019 Challenge

Conv Block In Channels Out Channels Kernel Size Stride Padding Batch Norm Max Pool Dropout
1 1 8 (1,1) (1,1) (0,0) True False .5
2 8 16 (3,3) (1,1) (1,1) True False .5
3 16 32 (16,128) (4,16) (8,16) True (4,4) .5
4 32 64 (5,5) (2,2) (1,1) True False .5
5 64 128 (5,5) (2,2) (1,1) True False .5
6 128 256 (3,3) (2,2) (1,1) True False .5

Table 1: Convolution blocks: structure of the convolutional layers.

FC-Layer In Channels Out Channels Batch Norm Dropout
Bilinear (256,1280) 512 True .2
Linear 512 256 True .2
Linear 256 number of classes False None

Table 2: Combining VGGish embeddings with spectrogram convolution output in fully-connected layers.

mum learning-rate threshold was reached. The model then would be
reset to the original learning rate and made to cycle through again,
with the rate of learning rate reduction set to be less severe. We
saved a new best version of the model at the conclusion of any epoch
that resulted in a new highest score for the coarse or fine level micro
AUPRC scores.

6. RESULTS

Our results can be found in Table 3, and can be compared to the
baseline in Table 4. Our method was able to surpass the Micro
AUPRC and Macro AUPRC baseline scores in the coarse-level eval-
uation. However, our method was unable to beat the baseline in
fine-level evaluation. Both CNN+VGGish models are checkpoints
from different points of a single training session; the best fine-level
score was achieved before the best coarse-level score.

The Hierarchical model was worse than the single model
trained to jointly output fine and coarse labels (CNN+VGGish1),
except for one metric: Micro F1 for the fine-level eval. This was a
surprise, but it seems to indicate that the single model has more than
enough parameters to do both fine and coarse tasks simultaneously.
A possible explanation is that the fine-level models MFi were only
trained on a strict subset of the dataset. An improvement might be
to use the entire dataset, but to assign a new dummy output label
in the ground truth for all examples where the coarse label 6= i, in
order to provide more negative examples.

7. CONCLUSIONS

Our results show how fusing a custom CNN model with VGGish
embeddings can impact scores. Furthermore, creating a hierarchical
model has potential to fine-tune subset classes of individual coarse
classes. Further hyper-parameter tuning may yield better results, as
may further experimentation with data augmentation techniques.

For more details please refer to our GitHub repository at
https://github.com/microsoft/dcase-2019.
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Micro AUPRC Micro F1 Macro AUPRC Micro AUPRC Micro F1 Macro AUPRC
System Fine-level evaluation Coarse-level evaluation

CNN+VGGish1 0.646 0.483 0.425 0.787 0.609 0.579
CNN+VGGish2 0.656 0.398 0.401 0.768 0.533 0.555

Hierarchical 0.643 0.490 0.414 0.787 0.609 0.579

Table 3: Results: metrics computed on validation set. Best results for each metric indicated in italics.
Results that beat baseline indicated in bold.

Micro AUPRC Micro F1 Macro AUPRC Micro AUPRC Micro F1 Macro AUPRC
System Fine-level evaluation Coarse-level evaluation

Fine-level 0.671 0.502 0.427 0.742 0.507 0.530
Coarse-level - - - 0.762 0.674 0.542

Table 4: Results for baseline systems. Best results for each metric indicated in italics. Results that beat models in Table 3 indicated in bold.


