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ABSTRACT

This report describes a submission for IEEE AASP Challenge
on Detection and Classification of Acoustic Scenes and Events
(DCASE) 2019 for Task 1 (acoustic scene classification (ASC)),
sub-task A (basic ASC) and sub-task B (ASC with mismatched
recording devices). The system exploits time-frequency represen-
tation of audio to obtain the scene labels. It follows a simple pat-
tern classification framework employing wavelet transform based
mel-scaled features along with support vector machine as classi-
fier. The proposed system relatively outperforms the deep-learning
based baseline system by almost 8% for sub-task A and 26% for
sub-task B on the development dataset provided for the respective
sub-tasks.

Index Terms— Haar function, spectral features, SVM, wavelet
transform.

1. INTRODUCTION

Acoustic scene classification (ASC) [1] is a supervised classifica-
tion task, where semantic labels are assigned to audio streams ac-
cording to the environments they represent. These environments
could be indoor, outdoor, or a moving vehicle. Applications of ASC
can be in context-aware and intelligent wearable devices, hearing-
aids, robotic navigation, surveillance and audio archive manage-
ment systems.

Any signal is generated when a system is excited by a source.
In case of a speech signal, the excitation is from a person’s vocal
chords that provide input to the vocal tract which is working as the
transformation system. On the other hand, audio signals recorded
from dynamic real-life environments are a superposition of various
audio events occurring simultaneously. In other words, multiple au-
dio sources overlap to make an acoustic scene. These signals are
less structured than speech/music signals. Efficient representation
of such multifaceted signals can be expected from features that cap-
ture local information in both time and frequency domains. In this
report, we present an ASC system employing a time-frequency fea-
ture which has been successful in different audio processing fields,
and a discriminative classifier at its core. The feature is called mel-
frequency discrete wavelet coefficients (MFDWC) [2]. In the present
work, we investigate the feature’s performance in classification of
data from the same device as the available training data (sub-task A)
and classification of data recorded with devices other than the train-
ing data (sub-task B). The classifier employed is a support vector
machine (SVM) with intersection kernel [3].

The rest of this report is organized in the following way: In
Section 2, we give the description of the elements of the proposed

system and elaborate on the experimental framework. In Section 3,
we present the results. It is followed by the conclusion of the work
in Section 4.

2. PROPOSED SYSTEM CONFIGURATION

The proposed ASC system incorporates the general pattern classifi-
cation framework as shown in Fig. 1. All the incoming audio signals
go through pre-processing and feature extraction. Models are built
from training data and then employed for classification of the test
samples.

Figure 1: Schematic of general pattern classification system.

2.1. Features

2.1.1. Mel-frequency discrete wavelet coefficients (MFDWC)

In all fields of speech processing, mel-frequency cepstral coeffi-
cients (MFCC) are the most exploited features. One of the impor-
tant steps in MFCC extraction is discrete cosine transform (DCT).
The basis vectors of DCT span the whole frequency range of the
signal. As a result, corruption of a band due to noise affects all the
coefficients. Also, the DCT basis vectors have fixed time-resolution
for all frequencies. Use of discrete wavelet transform (DWT) in-
stead can deal with these issues because it has better time and fre-
quency localization capacity, while simultaneously serving the need
of DCT [4]. Unlike Fourier based transforms, wavelet transform
uses short basis functions for high-frequency content and long ba-
sis functions for low-frequency content of a signal. Environmental
audio data mostly carries short high-frequency transients and long-
lasting low-frequency background noise at the same time [5]. The
low-frequency components get subsumed by the first few filters of
the mel scaled filterbank imparting high values to the coefficients
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Figure 2: MFDWC feature extraction scheme.

in this region. The high-frequency transients correspond to the au-
dio events typical to a class of environment. High values in the
latter coefficients mark the presence of these scene distinguishing
events. Wavelet based features are especially efficient in charac-
terizing the impulsive parts of the audio [5]. The time-frequency
localization property therefore enables wavelets to capture such di-
verse frequency elements of environmental audio. Discrete wavelet
transform (DWT) applied to mel-filterbank log-energies results in
MFDW coefficients [4]. The feature extraction scheme is same as
that of MFCC, except that the DWT replaces DCT, as shown in
Fig. 2 [2].

In many speech processing applications, dynamic coefficients,
that is, discrete-time derivatives of features computed from local
frames are used as features. We observed in our experiments that the
first derivatives (i.e., delta or velocity features) improved the perfor-
mance [2]. The addition of the second derivatives (i.e., double-delta
or acceleration features) did not prove beneficial.

2.2. Classifier

2.2.1. Support Vector Machine (SVM)

In our system, we have used SVM with intersection kernel. This
kernel uses the intersection between the features of the two classes
as a measure of similarity [3]. SVM is inherently a binary classifier.
For multi-class classification problem one can go for either one-vs-
one or for one-vs-all approach. The classifiers obtained by the first
method are typically smaller and require fewer resources than the
second method. Moreover, it has also been shown that the former
are marginally more accurate than the latter on standard classifica-
tion tasks [6]. Therefore, we have used the one-vs-one approach,
consequently training N(N − 1)/2 classifiers for N classes. SVM
requires that each data sample is represented as a vector. The mean
and standard deviation of a feature matrix can act as its vector rep-
resentation [7].

2.3. Experimental Framework

We have used the development dataset of TAU Urban Acoustic
Scenes 2019 (TAUUAS19D) for sub-task A (basic ASC) and TAU
Urban Acoustic Scenes 2019 mobile (TAUUASM19D) for sub-task
B (device mismatch ASC) [8] in our experiments. In both the devel-
opment datasets, training and testing portions were provided. The
audio of DCASE challenge recorded with Device A is in binaural
format [8], One possible way of working with such data is to first
convert the audio to monophonic by averaging the two channels [7].
All the audio signals, either after binaural-to-mono conversion for
device A or as they are for other devices, were framed by Hamming
window of 40ms with 50% overlap after pre-emphasis by a factor
of 0.97. A mel-scaled filterbank with 100 triangular filters was used
for feature extraction. The choice of the number of filters is based
on the results shown in Table 1. In general, the mother wavelet is
chosen such that its shape is similar to the signal which is to be de-
composed. In case of acoustic scenes signals it is difficult to fix a

particular wavelet that is compatible with the myriad sound events.
Haar function was used as the mother wavelet for DWT. Delta fea-
tures were extracted with 3-frame windows. Frame-wise mean and
standard deviation of the features was given as input to SVM clas-
sifier with intersection kernel.

Table 1: Class-wise mean accuracy (%) for different number of
filters on sub-task A development dataset. Bold-face: Maximum
mean accuracy in the column.

Number of filters Accuracy (%)
40 63.18
60 66.48
80 66.66
100 67.39
120 67.12

3. RESULTS

The results of the two sub-tasks on their respective datasets are
shown in Table 2. In the present challenge, class-wise mean ac-
curacy is used as the performance metric. The mean accuracy of
all classes reported for the logMBE-CNN baseline system for sub-
task A is 62.5%. Thus, by obtaining a mean class-wise accuracy of
67.39%, our proposed system has relatively outperformed the deep-
learning based baseline by nearly 8% on the development dataset of
sub-task A. Class-wise performance comparison of the two systems
for this sub-task is depicted in Fig. 3(a). The darker shades in the
diagonal of the proposed system’s confusion matrix exhibit its good
ability to classify all scene classes with ‘park’ and ‘street traffic’
category doing the best.

The performance of the proposed system for the three devices of
sub-task B is also shown in Table 2. It can be seen that the proposed
system performed better than the baseline for all three devices. Ac-
cording to the rules of the challenge for this sub-task, the ranking
of the systems will be done by the average performance with de-
vices B and C only. The reported baseline accuracy in this case is
41.4%. Our proposed framework achieved 52.32%, which is more
than 26% relatively better. The pictorially represented confusion
matrix in Fig. 3(b) is showing the average performance with de-
vice B and device C. Here we see that ‘airport’, ‘public square’ and
‘tram’ suffer the most mis-classifications. Many samples from ‘air-
port’ class are wrongly labeled as another indoor class, ‘shopping
mall’. The system has found it challenging to recognize the data
from ‘public square’ class and distributed it among not only out-
door classes but also indoor classes. Most erroneous classifications
of ‘tram’ samples is into other vehicle classes.

For both the sub-tasks, the proposed system seems to be find-
ing it more difficult to distinguish among vehicle classes than the
classes belonging to other types of environments. Another general
observation is that result-improvement on data recorded with the
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Table 2: Proposed system performance for for sub-task A and the three recording devices in sub-task B in terms of accuracy (%).

Features TAUUAS19D TAUUASM19D
Device A Device B Device C Average (B,C)

Proposed 67.39 66.91 47.96 56.67 52.32
Baseline 62.50 61.90 39.60 43.10 41.40
Relative improvement 7.82 8.09 21.11 31.49 26.38

Figure 3: Confusion matrix of results of proposed system with (a) TAU Urban Acoustic Scenes 2019 for sub-task A and (b) TAU Urban
Acoustic Scenes 2019 mobile for sub-task B.

commonly available customer devices (devices B and C) are better
than electret binaural microphone (device A) showing robustnessof
the proposed system with respect to recording devices.

4. CONCLUSION

In this technical report, we have described a system for acoustic
scene classification task (Task 1, Sub-task A and Sub-task B) of
DCASE challenge 2019. The first sub-task is concerned with the
basic problem of ASC, in which all available data (development and
evaluation) are recorded with the same device. On the other hand,
sub-task B addresses the situation in which an application will be
tested with a few different types of devices, possibly not the same
as the ones used to record the development data. Our system used
basic pattern classification framework with wavelet transform and
mel-scale based audio processing features to produce classification
better than the deep-learning based baseline system on both the sub-
tasks.
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