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ABSTRACT
Acoustic scene classification is the task of determining the environ-
ment in which a given audio file has been recorded. If it is a priori
not known whether all possible environments that may be encoun-
tered during test time are also known when training the system, the
task is referred to as open-set classification. This paper contains a
description of an open-set acoustic scene classification system sub-
mitted to Task 1C of the Detection and Classification of Acoustic
Scenes and Events (DCASE) Challenge 2019. Our system consists
of a combination of convolutional neural networks for closed-set
identification and deep convolutional autoencoders for outlier de-
tection. In evaluations conducted on the leaderboard dataset of the
challenge, the proposed system significantly outperforms the base-
line systems and improves the score by 35.4% from 0.46666 to
0.63166.

Index Terms— acoustic scene classification, deep convolu-
tional autoencoder, open-set classification, outlier detection

1. INTRODUCTION

Acoustic scene classification is a subfield of machine listening,
where systems need to determine the environment in which given
audio files were recorded, and has always been an integral part of
the DCASE challenge [1, 2]. Additionally, there is growing interest
in open-set classification [3, 4] within the machine learning commu-
nity since realistic scenarios and applications are always open-set
problems. The reason is that one can never capture the entire space
of classes when training a classification system. The only potential
exception is a very artificial setup that ensures no encounters of data
belonging to novel or unknown classes when running the system af-
ter training. But since change and evolution in general are inevitable
this setup seems very unlikely, especially in real world applications.
However, open-set classification is much more difficult than closed-
set classification because one also needs to determine whether data
belongs to one of the known classes or not (outlier detection [5]),
which is an a priori assumption in closed-set classification. This dif-
ficulty is probably the reason why most research has been focused
on closed-set classification.

To promote this research direction, in this year’s edition of the
DCASE challenge there is a subtask of the acoustic scene classifi-
cation task entirely focusing on the open-set setting (task 1C) [6],
which will also be the focus of this paper. The dataset consists
of 46 hours of 48kHz audio belonging to some unknown and ten
known classes, namely airports, indoor shopping malls, metro sta-
tions, pedestrian streets, public squares, streets with medium level

of traffic, traveling by a tram, traveling by a bus, traveling by an
underground metro and urban parks. For all recordings the same
recording device has been used (unlike to subtask 1B where four
different devices have been used) and all have a length of 10 sec-
onds. To evaluate the performance of the systems, the final score
is computed as the weighted average accuracy of the known classes
and unknown classes. For more information about the task, see [6].

To our best knowledge, previous work for open-set acoustic
scene classification is extremely limited. Still, there are some pa-
pers entirely focusing on that task as for example [7] where the
authors used one-class support vector machines for open-set clas-
sification. Another way to detect outliers is to make use of deep
convolutional autoencoders (DCAEs) [8, 9]. By training DCAEs
with data belonging to the known classes, one can expect that the
neural networks learn to reconstruct this data well but have difficul-
ties when encountering data belonging to unknown classes. In turn,
the reconstruction loss can be used as a heuristic to detect outliers.

The contributions of this work are the following. First and
foremost, a system for open-set acoustic scene classification is pre-
sented1. More specifically, we propose to use CNNs for closed-set
classification and DCAEs for rejecting unknown acoustic scenes via
outlier detection. As a last contribution, an effective way to com-
bine a closed-set classification system and outlier detection models
into a single open-set system is presented. It is also worth mention-
ing, that we did not use any external data resources nor pretrained
models for training our system, which makes the task even harder.

2. ACOUSTIC SCENE CLASSIFICATION SYSTEM

As already stated, this paper focuses on open-set acoustic scene
classification. But in order to do open-set classification one also
needs a well working closed-set classification chain. The reason is
that the system needs to 1) determine whether given data belongs to
one of the known classes (outlier detection) and if so, 2) predict the
most likely of the known classes (closed-set classification). Mathe-
matically, this corresponds to estimating

P (Y = yi,K = true|X = x)

=P (Y = yi|K = true, X = x)P (K = true|X = x)
(1)

where X and Y are random variables denoting the data and class
label, respectively, and K is a binary random variable indicating
whether the data belongs to one of the known classes (see [10]).

1An open-source Python implementation of the presented system is
available here: https://github.com/wilkinghoff/dcase2019
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Thus, open-set classification (left hand side) can indeed be decom-
posed into the subtasks closed-set classification and outlier detec-
tion (right hand side).

We will now present our feature extraction procedure followed
by descriptions of the closed-set classification and outlier detection
systems. This section is then concluded by a description of how to
combine both systems into a single open-set acoustic scene classifi-
cation system.

2.1. Feature extraction

Almost all recently proposed acoustic scene classification systems
as well as the baseline system utilize log-mel spectrograms as in-
put features (see e.g. [2, 11, 12]). As this is the state-of-the-art,
we also used log-mel spectrograms and closely followed [13] for
the parameter settings with a few changes. More precisely, we also
used a Hanning window size of 1024, a hop size of 500 and 64 mel
bins but used the cutoff frequencies 50Hz and 16000Hz. Addition-
ally, we normalized the audio files with respect to the maximum
norm before extracting the features. The resulting features are of
dimension 64× 442.

Furthermore, we utilized median filtering for Harmonic-
Percussive Source Separation [14] via Librosa [15] as many partic-
ipants have done in past editions of the DCASE challenge (see e.g.
[11, 16]). All mel-spectrograms were separated into harmonic and
percussive parts before applying the logarithm resulting in a total
number of three features per audio file: The log-mel spectrograms
themselves and their harmonic and percussive parts.

Before inserting the features into a neural network, we stan-
dardized them in two different ways. For closed-set classification,
we subtracted the mean and divided by the standard deviation of all
training data, which belongs to any of the ten known classes. When
detecting outliers, all features were standardized in the same way
but only data belonging to a single known class was used to com-
pute the mean and standard deviation. As we will train individual
DCAEs for each class, the data is standardized with respect to that
specific class beforehand.

2.2. Closed-set classification

To classify log-mel spectrograms, CNNs are the method of choice
in the era of deep learning. The CNN proposed in [13] is reported
to perform better than the baseline system of the challenge. Thus,
we used this CNN as a starting point but changed a few details
leading to an even better performance while using less parameters.
All CNNs have been implemented using Keras[17] with Tensorflow
[18] and their structure can be found in Table 1. For each of the three
features, namely log-mel spectrograms and their harmonic and per-
cussive parts, another CNN is trained for 6000 epochs with a batch
size of 32 by minimizing the categorical crossentropy. Mixup [19]
and Cutout [20] have been used to augment the training data, which
are known to be effective in terms of improving classification ac-
curacy (see [12]). Additionally, random shifts up to 60% in time
and up to 3 mel bins were used when augmenting data. To acquire
a single score per class, the geometric mean of the output distribu-
tions obtained with the three CNNs is taken. But since the classi-
fication accuracy obtained with the log-mel spectrograms is higher,
their corresponding scores have been used twice to give them more
weight than the scores resulting from the other two features. We
used the entire development set, training split and validation split,
for training the CNNs as more data results in more knowledge and
thus better performance.

Table 1: CNN architecture for closed-set classification.
Layer Output Shape #Parameters

Input (64, 442) 0
Convolution (kernel size: 3x3) (64, 442, 64) 640
Batch Normalization (64, 442, 64) 256
Non-linearity (ReLU) (64, 442, 64) 0
Convolution (kernel size: 3x3) (64, 442, 64) 36,928
Batch Normalization (64, 442, 64) 256
Non-linearity (ReLU) (64, 442, 64) 0
Average-Pooling (pool size: 2x3) (32, 147, 64) 0
Convolution (kernel size: 3x3) (32, 147, 128) 73,856
Batch Normalization (32, 147, 128) 512
Non-linearity (ReLU) (32, 147, 128) 0
Convolution (kernel size: 3x3) (32, 147, 128) 147,584
Batch Normalization (32, 147, 128) 512
Non-linearity (ReLU) (32, 147, 128) 0
Average-Pooling (pool size: 2x3) (16, 49, 128) 0
Convolution (kernel size: 3x3) (16, 49, 196) 225,988
Batch Normalization (16, 49, 196) 784
Non-linearity (ReLU) (16, 49, 196) 0
Convolution (kernel size: 3x3) (16, 49, 196) 345,940
Batch Normalization (16, 49, 196) 784
Non-linearity (ReLU) (16, 49, 196) 0
Average-Pooling (pool size: 2x3) (8, 16, 196) 0
Convolution (kernel size: 3x3) (8, 16, 256) 451,840
Batch Normalization (8, 16, 256) 1,024
Non-linearity (ReLU) (8, 16, 256) 0
Convolution (kernel size: 3x3) (8, 16, 256) 590,080
Batch Normalization (8, 16, 256) 1,024
Non-linearity (ReLU) (8, 16, 256) 0
Global-Average-Pooling 256 0
Dense (Softmax) 10 2,570∑

1,880,578

2.3. Outlier detection

It is well known, that the variability of the unknown class space can-
not be captured sufficiently by using samples of unknown classes
(see for example [10]). This is the reason why one should always
prefer to train one-class classification models for the known classes.
In conclusion, training data belonging to unknown classes is not
needed to train the outlier detection system.

The particular structure we have chosen for the DCAEs can be
found in Table 2. The basic task is to reduce the feature from a
dimension of (64, 442) to a dimension of (16, 49) and reconstruct
it as good as possible. To make it clear, we trained another DCAE
for each of the ten known classes resulting in a total of ten models
per feature. Again, we implemented the DCAEs with Keras [17]
and Tensorflow [18]. To train the DCAEs, we minimized the mean
squared error for 1000 epochs using a batch size of 32. In contrast
to the CNNs, no data augmentation techniques were applied while
training. This is also the reason why less epochs are sufficient for
training. We still trained different models for all three features but
this time only the training data split of the development set has been
used because the validation data set is needed in the next step.

2.4. Combined system

Since both subproblems, closed-set classification and outlier detec-
tion, have been tackled in some way, we can now determine the final
output of the system. The only problem left is that while the softmax
output of the CNNs can be interpreted as a probability distribution,
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Table 2: DCAE architecture for outlier detection.
Layer Output Shape #Parameters

Input (64, 442, 1) 0
Convolution (kernel size: 3x3) (64, 442, 64) 640
Batch Normalization (64, 442, 64) 256
Non-linearity (ReLU) (64, 442, 64) 0
Convolution (kernel size: 3x3) (64, 442, 64) 36,928
Batch Normalization (64, 442, 64) 256
Non-linearity (ReLU) (64, 442, 64) 0
Average-Pooling (pool size: 2x2) (32, 221, 64) 0
Convolution (kernel size: 3x3) (32, 221, 128) 73,856
Batch Normalization (32, 221, 128) 512
Non-linearity (ReLU) (32, 221, 128) 0
Convolution (kernel size: 3x3) (32, 221, 128) 147,584
Batch Normalization (32, 221, 128) 512
Non-linearity (ReLU) (32, 221, 128) 0
Average-Pooling (pool size: 2x2) (16, 110, 128) 0
Convolution (kernel size: 3x3) (16, 110, 128) 147,584
Batch Normalization (16, 110, 128) 512
Non-linearity (ReLU) (16, 110, 128) 0
Convolution (kernel size: 3x3) (16, 110, 128) 147,584
Batch Normalization (16, 110, 128) 512
Non-linearity (ReLU) (16, 110, 128) 0
Up-Sampling (size: 2x2) (32, 220, 128) 0
Zero-Padding (32, 221, 128) 0
Convolution (kernel size: 3x3) (32, 221, 64) 73,792
Batch Normalization (32, 221, 64) 256
Non-linearity (ReLU) (32, 221, 64) 0
Convolution (kernel size: 3x3) (32, 221, 64) 36,928
Batch Normalization (32, 221, 64) 256
Non-linearity (ReLU) (32, 221, 64) 0
Up-Sampling (size: 2x2) (64, 442, 64) 0
Convolution (kernel size: 3x3) (64, 442, 1) 577
Non-linearity (ReLU) (64, 442, 1) 0∑

668,545
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Figure 1: Structure of our proposed open-set acoustic scene classi-
fication system.

the loss of the DCAEs is just the mean squared error, which is not
even bounded. Moreover, there is not only a single loss value per
file but ten. Hence, it is highly non-trivial to find a suitable decision
criterion when trying to detect outliers.

To solve this issue, our method of choice is logistic regression
as implemented in Scikit-learn [21]. The idea is to treat the ten
losses as ten dimensional features and train a binary classifier with
them. For this purpose, we also made use of all audio files belong-
ing to unknown classes. Although it is not a good idea to use these
files directly for training a classifier, their losses should look much
more close to each other (equally bad) than the outliers themselves.
Hence, it may be a valid assumption to use them as valuable training
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Figure 2: Comparison of closed-set classification accuracies ob-
tained in task 1A.

data. In addition to that, the logistic regression model is very simple
compared to all neural networks involved before. Thus, there is less
room for the model to learn more than differentiating between losses
corresponding to known classes and the “strange looking ones” be-
longing to unknown classes. In order to obtain meaningful positive
examples of loss values belonging to known classes, we used the
validation split of the development set. This is the only reason why
the data files have not been used for training the DCAEs before.

To decide whether given data should be treated as an outlier, we
used a threshold of 0.5 for all probabilities resulting from the logis-
tic regression model. This means that for each encountered audio
file, the class belonging to the maximum likelihood is chosen but
if the score is smaller than 0.5, it is labeled as “unknown” instead.
In addition to that, we also labeled all audio files that had a max-
imum likelihood score less than 0.5 in the closed-set classification
evaluation as “unknown”. The underlying assumption is that most
resulting scores are very high anyway and thus very small scores
indicate that the model has difficulties in deciding which class the
encountered data belongs to. This may indicate data belonging to
unknown classes. See Figure 1 for an abstract overview of the entire
system.

3. EXPERIMENTAL RESULTS

For all experiments carried out in this paper, we did not use any
external data resources nor did we use any pretrained models, al-
though this has been recommended by the organizers of the chal-
lenge to better capture the variability of the unknown class space.

3.1. Closed-set classification

Closed-set classification is not the focus of this paper. Still, it is
a vital part of any open-set classification system. Therefore, we
compared the performance of our closed-set classification system
to those obtained with other systems. For this purpose, we used
the dataset provided for subtask A of task 1. Using the dataset of
subtask C for this purpose is impossible because the score also in-
cludes the system’s outlier detection performance. The results can
be found in Figure 2.

It can be seen that our closed-set classification accuracies are
significantly higher than the ones obtained with the baseline system
and with the system provided in [13]. Furthermore, our ensemble,
which utilizes all three features, performs significantly better than
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Figure 3: Comparison of open-set classification scores obtained in
task 1C.

the single model. This justifies the final design of our closed-set
classification system.

3.2. Open-set classification

The results of our open-set classification performance obtained with
the dataset of task 1C can be found in Figure 3. It is immediately
visible that our system massively outperforms the baseline system
as well as the system presented in [13]. More concretely, the per-
formance gain with respect to the score is 35.6% when comparing
to the challenge’s baseline system. Suprisingly, our ensemble per-
forms slightly worse than our system based on only log-mel spec-
trograms. This could be caused by the relatively small number of
leaderboard data. Since the improvements of our system over the
baseline systems are much larger in this open-set setting than in task
1A, much of the success needs to be credited to using DCAEs for
outlier detection. This shows that the overall structure of our open-
set acoustic scene classification system is suitable for this task.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an open-set acoustic scene classification
system that has been submitted to task 1C of the DCASE challenge
2019. It has been shown that a combination of CNNs for closed-
set classification and DCAEs for outlier detection yields significant
improvements over the baseline system. In fact, our system outper-
formed the baseline system by 35.4% without using any external
data resources, increasing the score from 0.46666 to 0.63166 on
the leaderboard data.

Using the mean squared error of DCAEs for outlier detection is
just a heuristic since the loss function to be optimized does not di-
rectly aim at rejecting unknown examples. Instead of using DCAEs,
possible future work may be to train a neural network with another
loss function that is specifically targeted at one-class classification
(e.g. [22]). The results can also be compared to those obtained
with an OpenMax layer [23], which can be understood as the open-
set version of a softmax layer. Another path to be investigated is to
make use of embeddings as for example the L3-Net embedding [24]
or OpenL3 [25]. These embeddings could be used in the same way
as i-vectors [26] or x-vectors [27] in open-set speaker recognition
(see e.g. [10]). Note that both, i-vector and x-vector, have been suc-
cessfully applied for closed-set acoustic scene classification [28, 29]
in past editions of the DCASE challenge. Thus, utilizing embed-

dings seems promising. Lastly, improving our relatively simple
closed-set classification model with more sophisticated data aug-
mentation techniques and other methods also improves the open-set
performance.
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