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ABSTRACT

Acoustic scene signal is a mixture of diverse sound events,
which are frequently overlapped with each other. The CNN mod-
els for acoustic scene classification usually suffer from model over-
fitting because they might memorize the overlapped sounds as the
representative patterns for acoustic scenes, and might fail to recog-
nize the scene when only one of the sound is present. Based on a
standard CNN setup with log-Mel feature as input, we propose to
stratify the log-Mel image to several component images based on
sound duration, and each component image should contain a spe-
cific type of time-frequency patterns. Then we emphasize the in-
dependent modeling of time-frequency patterns to better utilize the
stratified features. The experiment results on TAU Urban Acoustic
Scenes 2019 development dataset [1] show that the use of stratified
feature can significantly improve the classification performance.

Index Terms— Acoustic scene classification, CNN, stratified
feature, median filter, group convolution

1. INTRODUCTION

Acoustic scene classification (ASC) is the task of identifying the
type of environment (scene) in which a given audio signal is
recorded. Many real-world applications could benefit from ana-
lyzing acoustic scene signals. For example, it could be used for
context-aware computation in the perspective of Internet of Things
(IoT) [2]. Besides, a mobile navigation device could provide better
responses to their users in accordance with the acoustic scene.

An acoustic scene signal is composed of diverse sound events.
The sound events are usually overlapped, in both time and in fre-
quency domain. For example, in a bus, we may hear the sound pro-
duced by bus engine, the sound of crowd talking, and the sound of
traffic simultaneously. Harmonic and percussive sounds may also
occur in an acoustic scene signal, joinly increasing the energy in
some frequency bins.

The input to a CNN-based ASC system is typically a time-
frequency representation extracted from the raw audio waveform.
Examples are the Constant-Q transform [3], STFT, log-Mel and
MFCC. Among them, the log-Mel filter-bank feature is most widely
used for ASC task in DCASE challenges. The log-Mel feature im-
age and the CNN is used to learn representative image patterns
in acoustic scene images. Various feature extraction and process-
ing methods have been proposed for improving ASC accuracy. In
[4], Harmonic-Percussive Source Separation (HPSS) [5] and back-
ground subtraction techniques were used for feature preprocessing.

In [6], wavelet features were investigated as one type of input fea-
tures in ASC.

The CNN models are widely adopted in ASC and have demon-
strated good performance. However, acoustic scene signals have
some distinct characteristics that need to be taken into account when
applying the CNN model. Over-fitting of CNN models on acous-
tic scene signals is a major problem that requires further investi-
gation. Consider that the CNN is presented with a training sig-
nal that contains two overlapping sounds, both being representative
events for a specific scene. The CNN tends to learn the overlap-
ping sounds as a single sound pattern although they are actually
from independent sources. At the testing stage if another input sig-
nal from the same acoustic scene is presented, with only one of the
sounds being present, the CNN may fail to recognize it. For exam-
ple, audio signals recorded from a windy “park” scene may contain
overlapping sounds of bird singing and wind blowing. If the CNN
model is trained to recognize the mixture of two sounds as a distinct
sound pattern representing “park”, when a testing signal of windless
“park” is presented, the CNN would not be able to recognize bird
singing as a representative pattern for “park” scene.

To address the above limitation, we propose to use stratified
input features to better represent the layered structure of acoustic
scenes. A given log-MEL image is unmixed as the combination of
a number of component images, which correspond to sound patterns
of different nature. Through independent modeling of each compo-
nent image, the CNN model would less likely be over-fitting to the
training scenes.

Specifically, a median-filter-based method is proposed for ex-
tracting stratified time-frequency representation. Two medium fil-
ters with different kernel size are used to decompose a log-Mel im-
age into 3 components, which correspond to time-frequency pat-
terns of different time durations. Group convolution is applied in
the convolution layers to enable independent deep non-linear mod-
eling of each type of time-frequency patterns. The experimental
results on TAU Urban Acoustic Scenes 2019 development dataset
[1] show that this method significantly improves the ASC accuracy
under a single model setup.

2. STRATIFYING LOG-MEL IMAGES

Through stratifying, we unmix the sounds / time-frequency patterns
in the log-Mel image to several component images. Each of them
contains a smaller number of time-frequency patterns compared to
the original image. As a result, acoustic feature extractors trained
with these component images would be less prone to overfit.



Detection and Classification of Acoustic Scenes and Events 2019 Challenge

2.1. Median Filtering of Time-Frequency Images

In image processing, median filter is widely used to suppress im-
pulse noise in an image. The impulse noise refers to high positive
pixel values concentrated locally in a small region. As explained
in [7], moving median filter is effective to suppress impulse events
that are narrower than half of the filtering window.

In a log-Mel image of sound, a pixel value indicates signal in-
tensity at the respective time and frequency. The time-frequency
patterns of acoustic intensity are perceived by human listeners as
various sound events. If median filtering is applied along the time
axis for each frequency bin, impulse events of “short” duration
(shorter than half of the filter length) would be suppressed. Sub-
tracting the filtered image from the original log-Mel image gives an
image that contains only those “short” impulse events.

2.2. Feature Stratification Based on Median Filters

We propose a feature stratification method based on median filter-
ing. Let S denote log-Mel feature image computed from an acoustic
scene signal. The procedures of feature stratification are described
as Algorithm 1.

Typical dimension of S is (1000, 128), i.e., 1000 time frames
and 128 frequency bins. It represents an audio signal of 10-second
long (frame shift is 0.01 second). The kernel sizes of median fil-
ters are determined based on empirical observation on training data.
For small-size kernels, we set the kernel size of Ms to (11, 1). That
is, sound events shorter than 5 frames would be filtered out; For
Ml with kernel size of (51, 1), sound events shorter than 25 frames
would be removed. Using the median filters, the algorithm produces
3 filtered images. Sshort gives the time-frequency representations
of sound events shorter than 5 frames, or 50 ms; Smedium con-
tains medium-duration patterns and Slong contains long-duration
patterns. It can be seen that S = Sshort + Smedium + Slong .

Algorithm 1 Proposed feature stratification method.

Require:
The original log-Mel image, S;
Median filtering function with small kernel size, Ms;
Median filtering function with large kernel size, Ml;

Procedure:
1: Sr = Ms(S);
2: Sshort = S − Sr;
3: Slong = Ml(Sr);
4: Smedium = Sr − Slong;
5: return (Sshort, Smedium, Slong);

Figure 1 gives an example of feature stratification on a log-Mel
image representing a “park” scene. It can be seen from Figure 1a
that the original log-Mel image is a mixture of local sound events
and globally present background. After feature stratification, local
sound events are separated into 3 component images based on dura-
tion. Sshort contains the fast varying texture patterns. The globally
present background is represented in Slong .

3. BASELINE SYSTEM

3.1. Data Preprocessing

The TAU Urban Acoustic Scenes 2019 development dataset [1] is
used for Task 1A of the DCASE 2019 Challenge. It contains 40

(a) Original log-Mel image of “park” scene, S.

(b) Component image of short-duration impulses, Sshort.

(c) Component image of medium-duration impulses, Smedium.

(d) Component image of long-duration impulses, Shigh.

Figure 1: Illustration of feature stratification based on Algorithm 1.

hours of acoustic scene audio recorded with the same device. For
a 10-second binaural signal with 48 kHz sampling frequency in the
dataset, STFT with 2048 FFT points is applied separately on the left
and right channels, with window length of 25 ms and hop length of
10 ms. Mel filter-banks with 64 or 128 bins across the frequency
range of 20 Hz to 24 kHz are applied to the STFT coefficients. Log-
arithm operation is applied to obtain the log-Mel features. Finally
the log-Mel features of two channels are averaged to obtain a single
log-Mel representation.

3.2. CNN Model Structure

Three CNN models are trained as the baseline in our experiments.
Their model structures are shown as Table 1. The AlexNet model is
inspired by the original AlexNet design [8], with batch normaliza-
tion and reduced number of model parameters. The AlexNet-Light
model is obtained by halving the number of convolution kernels in
the AlexNet model. The CNN-GAP model is obtained by using
Global Average Pooling (GAP) to replace the flattening operation
in AlexNet. Since CNN-GAP model has no fully connected layers,
we empirically decide to include a larger number of convolution
layers and a larger number of kernels. The GAP serves as a regular-
izer to average all pixels in a feature map. However, pooling over
frequency is inconsistent with the intrinsic characteristic of log-Mel
features in principle. For example, a 1000 Hz single tone and a
5000 Hz single tone are totally different sounds to human percep-
tion. On the log-Mel image they are two horizontal lines located at
different levels. The CNN-GAP may regard them as the same pat-
tern since their local visual patterns are the same. Pooling over time
potentially leads to the loss of useful long-term temporal patterns.
Despite these limitations, its power as a strong regularizer should
not be ignored and usually give better performance than flattening
operation [9]. It should be noted that the input of AlexNet-Light
model is 64-dimension log-Mel feature, while the input of AlexNet
and CNN-GAP model is 128-dimension.

For a CNN model to make prediction, a 10-second audio sam-
ple is first segmented into non-overlapping 1.28-second segments.
Zero padding is applied to the last segment so that all segments have
the same length. For each segment the CNN outputs a probability
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Table 1: Structures of 3 CNN models used as baselines for our experiments. AlexNet-Light model differs from Alexnet model only in the
number of convolution kernels. The CNN-GAP model uses a Global Average Pooling (GAP) layer and thus has no fully connected layers.

AlexNet-Light AlexNet CNN-GAP

1 Input 1x128x64 Input 1x128x128 Input 1x128x128
2 3x3 Convolution-24-BN-ReLU 3x3 Convolution-48-BN-ReLU 3x3 Convolution-66-BN-ReLU
3 2x2 Max Pooling 2x2 Max Pooling 3x3 Convolution-66-BN-ReLU
4 3x3 Convolution-48-BN-ReLU 3x3 Convolution-96-BN-ReLU 2x2 Max Pooling
5 2x2 Max Pooling 2x2 Max Pooling 3x3 Convolution-132-BN-ReLU
6 3x3 Convolution-96-BN-ReLU 3x3 Convolution-192-BN-ReLU 3x3 Convolution-132-BN-ReLU
7 2x2 Max Pooling 2x2 Max Pooling 2x2 Max Pooling
8 3x3 Convolution-96-BN-ReLU 3x3 Convolution-192-BN-ReLU 3x3 Convolution-264-BN-ReLU
9 3x3 Convolution-96-BN-ReLU 3x3 Convolution-192-BN-ReLU 3x3 Convolution-264-BN-ReLU
10 2x2 Max Pooling 2x2 Max Pooling 2x2 Max Pooling

11 Flattening Flattening Global Average Pooling
12 Fully Connected (dim-1024)-BN-ReLU Fully Connected (dim-1024)-BN-ReLU
13 Fully Connected (dim-256)-BN-ReLU Fully Connected (dim-256)-BN-ReLU
14 10-way Softmax 10-way Softmax 10-way Softmax

vector, with each element being the probability towards a specific
scene. Averaging the vectors of all segments gives the probabil-
ity vector of the audio sample. The acoustic scene with the largest
probability is the model prediction.

4. UTILIZING STRATIFIED FEATURES

By Algorithm 1, the original log-Mel image is decomposed into
3 component images, which can be regarded as one image with 3
channels (similar to the RGB channels). The kernel size of the first
convolution layer in our proposed system is 3 × 3 × 3 while in
baseline system it is 1× 3× 3.

However, simply changing the input channel of CNN to 3 may
not be sufficient to model the distinct time-frequency patterns in
each component image. If all the convolution kernels consider all
the input channel jointly, the 3 types of time-frequency patterns are
modeled independently only by the first convolution layer, which
can be regarded as a shallow model. In order to enable independent
deep non-linear modeling of the time-frequency patterns, the idea
of group convolution is used.

Specifically, the AlexNet and Alexnet-Light models have their
convolution kernels divided into 3 groups, each seeing only one
component image. The convolution operations are done inside each
group, without sharing feature maps between groups. Only in the
fully connected part the feature maps are considered altogether, as
illustrated in Figure 2.

For CNN-GAP model the group convolution is applied differ-
ently. Since the coordinate information of time-frequency patterns
is lost after global average pooling, group convolution is applied
only in the first few convolution layers of the CNN-GAP model,
leaving some upper convolution layers to consider all feature maps
together. A consideration towards the importance of coordinate in-
formation is that, a sound event’s time-frequency patterns could
be separated into the component images after feature stratifica-
tion. Based on the coordinates of its time-frequency patterns in the
feature maps, we are able to jointly consider its high-level time-
frequency patterns.

Figure 2: An illustration of AlexNet model with stratified input fea-
ture. By using group convolution, we can model the time-frequency
patterns in 3 input images independently.

5. EXPERIMENTAL RESULTS

5.1. Performance of Feature Stratification

Table 2 shows the performance of different CNN models and input
features. In the “Model” column, “AlexNet”, for example, is one
of the models as described in Table 1, “S” means that the model is
modified to cope with the “stratified” feature. “AlexNet-S” means
that based on “AlexNet”, the convolution filters are divided into 3
groups, each seeing only one input channel. Notice that “CNN-
GAP-S” only uses group convolution in the first 4 convolution lay-
ers, and the reason is described as in Section 4.

In the “Input Feature” column, “logMel-64” means the 64-
dimension log-Mel feature, and “logMel-128” means the 128-
dimension log-Mel feature. “S” means the feature is stratified using
Algorithm 1, with median filter windows being (11, 1) and (51, 1).

Apart from using CNN models with group convolution and
stratified log-Mel features, we study the effect of mixup [10].
Mixup is a data augmentation technique which constructs a new
training sample from the weighted sum of two existing training
samples. The effectiveness of mixup in ASC was reported in [11].
In our experiments, if mixup is used with the stratified features, only
the component images of the same type will be mixed, e.g., Slong

will be mixed with other Slong , and will never be mixed with Sshort
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Table 2: Model performance on development dataset under differ-
ent setups. The “S” in the “Model” column means we use group
convolution to cope with the stratified input features, as described
in Section 4. The “S” in “Input Feature” column means we use the
stratified feature as the input.

Model Input Feature Mixup Accuracy

AlexNet-Light logMel-64 no 0.682
AlexNet-Light-S logMel-64-S no 0.708
AlexNet-Light logMel-64 yes 0.707
AlexNet-Light-S logMel-64-S yes 0.719

AlexNet logMel-128 no 0.717
AlexNet-S logMel-128-S no 0.725
AlexNet logMel-128 yes 0.728
AlexNet-S logMel-128-S yes 0.766

CNN-GAP logMel-128 no 0.718
CNN-GAP-S logMel-128-S no 0.740
CNN-GAP logMel-128 yes 0.721
CNN-GAP-S logMel-128-S yes 0.721

or Smedium.
From Table 2, we can see that the AlexNet model with 128-

dimension feature is better than AlexNet-Light model with 64-
dimension feature. The models utilizing the stratified features have
significant performance gain. Using mixup, the AlexNet-S model
with stratified logMel-128 feature performs the best, achieving an
accuracy of 0.766 on development dataset.

It is unexpected that the CNN-GAP model does not benefit
much from using mixup. The accuracy of CNN-GAP-S model
drops after mixup is applied. A possible reason could be that the lo-
cal time-frequency patterns become harder to recognize when they
are mixed up, and thus influence the learning of CNN models with
GAP.

5.2. Comparison with HPSS

The Harmonic-Percussive Source Separation (HPSS) [5] is de-
signed for separating the harmonic and percussive sounds. It is
used by the winner of DCASE 2018 Task 1A as part of system in-
put [12]. HPSS is different from the proposed feature stratification
approach, which is based on sound duration. However, HPSS also
may carry the same idea as feature stratification, because the orig-
inal time-frequency feature is separated into “harmonic” part and
“percussive” part. We use the extended HPSS technique [13] to ex-
tract 3 component images, “harmonic”, “percussive” and “residual”
to compare with our feature stratification method. The experiment
result given in Table 3 shows that our approach can achieve better
performance under all of the 3 setups. The possible reason could be
that for our approach the time-frequency patterns in each compo-
nent image are more sparsely distributed, and time-frequency pat-
terns of different types are better decomposed into different compo-
nent images.

6. CHALLENGE SUBMISSION

The ASC system submitted to the DCASE 2019 task 1A is based
on the best model setup presented above (AlexNet-S with logMel-
128-S feature and mixup). We trained 4 models with the best model
setup using the entire development dataset. The final prediction on

Table 3: Comparison between HPSS and our feature stratification
method.

Model Input Feature Mixup Accuracy

AlexNet-S logMel-128-S no 0.725
AlexNet-S logMel-128-HPSS no 0.721

AlexNet-S logMel-128-S yes 0.766
AlexNet-S logMel-128-HPSS yes 0.728

CNN-GAP-S logMel-128-S no 0.740
CNN-GAP-S logMel-128-HPSS no 0.720

evaluation dataset is simply obtained by averaging soft predictions
of the models.

7. CONCLUSIONS AND PERSPECTIVES

We propose the use of stratified features as the input of CNN-based
acoustic scene classification system. It aims to deal with the over-
fitting problem caused by the overlapping of various time-frequency
patterns in a log-Mel image. After the log-Mel image is strati-
fied as several component images, we make time-frequency patterns
in each component image being modeled independently by using
group convolution. The experiment results on development dataset
show that our approach can significantly improve the model accu-
racy. In addition, the compatibility of our approach with the mixup
technique is studied, and a single-model accuracy up to 0.766 is
achieved.

In the future work, we will investigate the effectiveness of
feature stratification on the task of weakly-labeled audio tagging.
Other possible methods of feature stratification will also be ex-
plored.
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