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ABSTRACT

In this report, we present our system for the task 4 of DCASE 2019
challenge(Sound event detection in domestic environments). The
goal of the task is to evaluate systems with real data either weakly
labeled or unlabeled and simulated data that is strongly labeled. To
perform this task, we propose resdual CRNN as our system. We
also use mean-teacher model based on confidence thresholding and
smooth embedding method. In addition, we also apply specaugment
for the labeled data shortage problem. Finaly, we achieve better
performance than DCASE2019 baseline system.

Index Terms— Sound event detection, resdual CRNN, Smooth
embedding, Confidence thresholding

1. INTRODUCTION

Sounds contain a large amount of information about our everyday
environment and physical events that take place in it. These in-
formation can help humans understand the surroundings even with-
out visual information. Developing systems to automatically extract
this information has huge potential in several applications including
multimedia indexing [1], intelligent monitoring system in living en-
vironment [2], health care [3], etc. DCASE challenge has been or-
ganized to make a significant amount of effort to promote develop-
ing reliable method for recognition of sound scenes and individual
sound sources in realistic soundscapes. Challenge in this year com-
prises five tasks: acoustic scene classification, audio tagging with
noisy labels and minimal supervision, sound event localization and
detection, sound event detection in domestic environments, and ur-
ban sound tagging. This report describes a solution to task 4 of the
DCASE 2019 challenge, which is the follow-up to DCASE 2018
task 4. It is aiming to investigate is whether we really need real
but partially and weakly annotated data or is using synthetic data
sufficient? or do we need both? We propose several improvement
on data augmentation, model architecture and training method to
achieve better performance.

2. PROPOSED METHODS

We present specaugment for data augmentation, resdual CRNN
model architecture and improvements on mean-teacher training
method.

2.1. Data augmentation

As the amount of weakly labeled data used in task 4 is small, we
apply specaugment method [4] to generate additional training data
for the task. The augmentation improve generalization ability of the
model for various unseen data.

To be specific, we construct augmentation policy on the log
Melscale spectrogram. The policy is frequency masking applied
to the spectrogram so that f mel frequency bands [f0, f0 + f)
are masked, where f is first selected from a uniform distribution
from 0 to the frequency mask parameter F , and f0 is selected from
[0, v − f). v is the length of frequency axis. This policy makes
model robust to the partial loss of frequency information.

2.2. Proposed architecture

Our system is based on the baseline system and the best submission
of DCASE2018 task4 [5], shown in Fig.1. We inroduce shake-shake
mechanism to context gating module for regularization and propose
resdual CRNN to make use of both convolutional features and re-
current fetures.

2.2.1. Shake-shake mechanism

Due to the weakly labeled data shortage, we may run into overfit
promblem easily. We propose shake-shake mechanism [6] to alle-
viate the problem. Based on the typical context gating module [7],
we propose another branch added to it. The module follows this
equation;

Y = σ(αF(X,W1) + (1− α)F(X,W2))�X (1)

where X is the input feature, σ is sigmoid activation and � is
element-wise multiplication. W1 and W2 are sets of weights as-
sociated with the 2 branches. α is a random variable following a
uniform distribution between 0 and 1 during training and sets to the
value of 0.5 during testing. The random numbers perform update
operation before ezch forward and backward pass. In this way, we
apply stochastic disturbance to our system.

2.2.2. Resdual CRNN

CRNN framework [8] has been shown to efficient for the sound
event dectection. Based on this, we present resdual CRNN [9] to
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Figure 1: The overall structure of the proposed model.

establish relatonship between local features and contextual features.
Let xt denote the output of CNN part and zt denote the output of
RNN part. The resdual features at time step t is;

at = ReLU(xtWx + bx)⊕ zt (2)

whereWx and bx are the weight of a fully-connected layer and ⊕
indicates vector concatenation.

2.3. Semi-supervised training methods

We use mean-teacher method [10] to explore possible usage of the
large amount of unlabeled data. In this method, the student model
is trained on weakly labeled data and weights of the teacher model
are a moving average of the student model. A cost for consistency
between teacher and student model is applied on both labeled and
unlabeled data.

As for consistency loss, we use confidence thresholding method
[11] to improve it. For the sample si, if the predicted probability of
teacher model is below the confience threshold, the consistency loss
for the sample si is masked to 0. This means if the teacher model
doesn’t learn well for the sample, it should not teach the student.
This help student learn correct labels from the steacher.

We also apply smooth embedding [12] method for our system.
Let h denote the mapping from the input space to the embedding
feature space which is the output feature map of the resdual CRNN.
We define the loss on the embedding;

lS =

{
‖h(xi)− h(xj)‖2 if yi = yj
max(0,m− ‖h(xi)− h(xj)‖)2 if yi 6= yj

(3)

where m > 0 is a margin and ‖ · ‖ is Euclidean distance. The loss
urge smaples with the same label to have consistent embeddings
and push samples with different labels apart from each other. It
helps obtain more expressive and discriminative representation in a
smooth and coherent feature space.

3. EXPERIMENT AND RESULTS

In this section, we show the system setup and report thr performance
of our model.

3.1. dataset

The dataset for training comprises 3 parts, including weakly labeled
dataset, unlabeled in domain dataset and synthetic strongly labeled
dataset. The amout of weakly labeled data is rare. The dataset

Table 1: Experimental results for the baseline and proposed meth-
ods.

Model F1 Precision Recall

DCASE 2019 Baseline 23.7 - -
ResCRNN-MT 39.4 39.0 41.6
ResCRNN-MT-fusion 42.1 42.5 42.2

is composed of 10 sec audio clips recorded in domestic environ-
ment or synthesized to simulate a domestic environment. There are
10 kinds of events including Speech, Dog, Cat, Alarm/bell/ringing,
Dishes, Frying, Blender, Running water, Vacuum cleaner and Elec-
tric shaver/toothbrush. In addition, the events in audio clip may
partly overlap.

3.2. Experimental setup

Log-Mel spectrogram is extracted from audio clips by 64-bin, 2048-
window and 511-hop. The spectrogram used as the input of system
has size of 864×64. The model shown in Fig. 1 consists of six
CNN blocks in the convolutional part, followed by a bi-RNN. The
convolution layers in CNN blocks have 128 channels with 3×3 ker-
nel size. Adam optimiezer is used to optimize the network with a
learning rate of 0.001.

3.3. Results

In this section, we compare our system based on resdual CRNN
using mean-teacher method with the baseline system. Results pre-
sented in Table 1 show that our proposed method performs better
than baseline. Moreover, we fuse our model with the model using
the audio tagging result as the sound event detection result as pre-
sented in [13]. This fusion achieves even better result.

4. CONCLUSION

This report describes some methods for the sound event detection
in task 4. The specaugment is used to enlarge data and deal with
labeled data shortage problem. More expressive features are ob-
tained by resdual CRNN and mean-teacher method with confidence
thresholding and smooth embedding. Finally, our model achieves
better resukt than the baseline model. In the future, more efforts
will be made to the usage of synthetic strongly labeled dataset for
improvement.
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