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ABSTRACT

This technical report describes a system used for DCASE 2019
Task 2: Audio tagging with noisy labels and minimal supervision.
Building a large-scale multi-label dataset normally requires exten-
sive amount of manual effort, especially for general-purpose audio
tagging system. To tackle the problem, we use a semi-supervised
teacher-student convolutional neural network (CNN) to leverage
substantial noisy labels and small curated labels in dataset. To fur-
ther regularize the system, we exploit multiple data augmentation
methods, including SpecAugment [1], mixup [2], and an innovative
time reversal augmentation approach. Moreover, a combination of
binary Focal [3] and ArcFace [4] losses are used to increase the ac-
curacy of pseudo labels produced by the semi-supervised network,
and accelerate the training process. Aadaptive test time augmenta-
tion (TTA) based on the lengths of audio samples is used as a final
approach to improve the system. We choose a single system that
generates the submission file Zhang BIsmart task2 3.output.csv
to be the candidate model considered for the Judges’ Award. Other
two systems use ensemble approach to furthur improve the perfor-
mance.

Index Terms— Audio Tagging, Label Noise, Semi-Supervised
Learning, Data Augmentation

1. INTRODUCTION

A general-purpose audio tagging system can be applied to various
tasks such as real-time sound events recognition and video tagging.
However, it is difficult for not only machines, but also human be-
ings to distinguish similar sound events. It means that extensive
effort would be required to manually annotate audio events if us-
ing supervised approach to build the system. Task 2 of DCASE
2019 challenge expects participants to build an accurate and effi-
cient general-purpose audio tagging system using a combination of
small size of manually annotated sound events and a large size of
data without verified labels [5].

In this challenge, Freesound provides the dataset FSDKag-
gle2019. It was collected by Music Technology Group at the Uni-
versity Pompeu Fabra (MTG-UPF) organized with the AudioSet
Ontology [6]. The duration of the audio clips in the curated set is
between 0.3s and 30s. This dataset is split into three subsets: a cu-
rated training set with 4,970 audio clips, a public test set with 1,120
clips, and a private test set with 3,361 clips. The labels in FSDK-
aggle2019 are manually annotated. In addition, the challenge also

provides a dataset with 19,815 audio clips gathered from the Yahoo
Flickr Creative Commons 100M dataset (YFCC) [7]. Audio clips
in YFCC are labeled automatically so that a substantial amount of
label noise is expected. The duration of of the audio clips in the
noisy ranges between 1s and 15s, with vast majority lasting 15s.

There are three major challenges in this task. First, unlike the
task last year [8], participants face a multi-label classification prob-
lem instead of multi-class classification. Second, the noisy set is
nearly 4 times of the curated training set. A system trained solely
on the curated training set would be easily overfit and thus it might
have lower performance when applied to audio events of general
sources. Third, the source of curated and noisy sets are different.
We expect to see a system trained on samples from YFCC have
poor performance on samples from FSDKaggle2019 due to the do-
main mismatch. How to denoise the label, and leverage the use of
the noisy set to improve the regularization of the system are the keys
to succeed in this challenge.

Inspired by [9], we build a highly generalized system by utiliz-
ing the noisy set while keeping the influence of domain mismatch
at the minimal level. We first warm up the neural networks with
noisy data, then construct a semi-supervised network to automati-
cally generate pseudo-labels for audio clip in the noisy set during
the training phase. We use a combination of classification loss and
large-margin loss to increase the credibility of pseudo-labels. More-
over, extensive data augmentation approaches are applied to further
regularize the network. We introduce a time reversal augmentation
approach, which improves the performance with minimal computa-
tional cost.

2. APPROACH

In this section, we talk about the approach we used to train our
system. To facilitate the description, we introduce some notations.
Given a batch V ofNV labeled samples from FSDKaggle2019 with
corresponding binary targets yV and a batch W of NW samples
from YFCC, our Teacher-Student network produces a processed
batch of augmented labeled samples V̂ and a batch of augmented
samples Ŵ with pseudo-labels ŷŴ guessed by the network. Then
we apply mixup to create V ′ × yV ′ and U ′ × yU′ that are used
to compute the multi-task loss term described below. We describe
each part of the process in the following subsections.
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Figure 1: Overview of the system

2.1. Preprocessing and Feature Extraction

We first read the audio files using 32 kHz sampling rate, then trim
the beginning and ending silence. A frame is silent if its power is
55 dB below the peak power in the entire signal. Then we covert
the signal from time domain to logarithm-scaled mel-spectrogram
(log-mel spectrogram) using the following parameters: length-1024
FFTs, hanning window, length-500 hop size, and mel frequency fil-
ter bank of size 128. Under such settings, the log-mel spectrogram
of an 1-second audio clip consists of 64 frames. After extracting
the log-mel spectrogram for all audio clips in both curated set and
noisy set, we normalize them using the mean and standard deviation
of the extracted log-mel spectrograms in the noisy set. All steps in
this section, including silence removal, STFT, mel filtering and log
scaling are performed using the librosa package.

2.2. Data Generating and Augmentation

In this section, we talk about data generating process and data aug-
mentation during the training phase. As mentioned, each batch con-
tains NV samples from V and NW samples from W . Hence there
are N = NV +NW samples in each batch. One should notice that
training CNN requires all samples to have the same dimensional-
ity. However, audio clips in both FSDKaggle2019 and YFCC have
various lengths of duration. In our system, we choose each sample
to have 192 frames (3 seconds). For audio clips longer than 3 sec-
onds, we randomly extract 192-frame patches from the normalized
log-mel spectrogram; for audio clips less than 3 seconds, we pad
the spectrogram to 192 frames repeatedly. Thus, each sample in the
batch has 192× 128 dimensionality.

After getting samples of log-mel spectrograms with the same
dimensionalities, we apply SpecAugment without time warping
[1]. This augmentation approach simply applies mF frequency
masks that each mask sets f ∼ Uniform(0, pf ) consecutive fre-
quency channels to 0, and mT time masks that each mask sets
t ∼ Uniform(0, pt) time frames to 0.

In addition to SpecAugment, we apply a time reverse augmenta-
tion. In the batch of augmented log-mel spectrograms, each sample
has 50% chance to reverse its entire time steps. Reversed spectro-
grams no longer represent the original audio signals, therefore we
create new classes for them. In this way, our neural network aims to
solve a multi-label classification problem with 160 = 2×80 unique
classes. To explain how we create labels with doubled classes, let’s
imagine mini-version of our task with 3 unique classes only. Sup-
pose the label of an audio clip is (0, 1, 1), then its label in the new
system becomes (0, 1, 1, | 0, 0, 0), and the label of the time-reversed
sample is (0, 0, 0, | 0, 1, 1). We concatenate the reversed classes af-
ter the original ones in the same order. We will discuss how to make
inferences using the system with doubled number of classes in the
inference section.

We name the batch with augmented curated samples V̂ , and the
batch with augmented noisy samples Ŵ .

2.3. Generating Pseudo-Labels Using Label Cleaning Head

Algorithm 1 shows the procedure to form V ′ × yV ′ and U ′ × yU′ .
This directly follows the steps introduced in [9] except the non-
linear activation in the multi-task heads. The backbone CNN is a
VGGish network with 8 convolutional layers as described in Table
1. As shown in Fig. 1, the backbone extracts hidden features for
both label cleaning head g and classification head h. The binary
labels of samples in V̂ are fed into the network normally, while the
pseudo-labels of samples in Ŵ are determined by g using

ŷŴ = 1g(f(Ŵ ))>η (1)

where η is a threshold. The label cleaning head g is considered as
teacher net that only updates its weights with samples from curated
set. On the other hand, the classification head h updates its weights
using both curated training set and noisy set. The purpose of having
two different heads is to separate the functionalities of the teacher
and student nets, so each of them can specialize its own task.
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Algorithm 1: algorithm to generate V ′ × yV ′ and U ′ × yU′

for training the teacher-student network shown in Fig. 1
Input: V , W , yV , hyperparameters mf , mt, pf and pt in

SpecAugment, threshold η to determine the
pseudo-labels, Beta distribution parameter α for
mixup

1 V̂ = SpecAugment(V )

2 Ŵ = SpecAugment(W )
3 ŷŴ = 1g(f(Ŵ ))>η

4 Û = Concat(V̂ , Ŵ )
5 yÛ = Concat(yV , ŷŴ )

6 V ′ × yV ′ = mixup(V̂ × yV , Suffle(V̂ × yV ))
7 U ′ × yU′ = mixup(Û × yÛ , Suffle(Û × yÛ ))

Output: V ′, U ′, yV ′ , yU′

2.4. mixup

In addition to approaches described above, we utilize mixup to fur-
ther generalize our neural network [2]. Since the label cleaning
head g only updates its weights from samples of curated set, we
do not want mixup to ”contaminate” its training procedure. We
follow [10] to define our mixup procedure. For each pair of two
samples with their corresponding binary labels (x1, y1), (x2, y2),
mixup computes the training pair (x′, y′) by

λ ∼ Beta(α, α)

λ′ = max(λ, 1− λ)
x′ = λ′x1 + (1− λ′)x2
y′ = λ′y1 + (1− λ′)y2

(2)

where α is a hyperparameter to determine the Beta distribution. As
mentioned previously, the label cleaning head g takes only curated
samples while the classification head h takes both curated and nosy
samples. To apply mixup under such constraints, we first collect
augmented samples and their corresponding labels into V̂ , Ŵ , yV
and ŷŴ as described in section 2.2 and 2.3. Then we combine V̂
and Ŵ , yV and ŷŴ such that Û = V̂ ∪Ŵ and yÛ = yV ∪ŷŴ . After
this, we shuffle V̂ × yV . Together with the original V̂ × yV , these
two sets are served as the sources for mixup to form V ′×yV ′ , which
is then fed into the label cleaning head g. Similarly, we shuffle
Û × yÛ and form U ′ × yU′ for the classification head h.

2.5. Loss Function

Instead of cross-entropy loss, Focal loss is used to train and make
inference for both label cleaning head g and classification head h in
our network [3]. Binary Focal loss is defined as

LFocal = −
M∑
c=1

(1− pc)γyc log(pc)+ pγc (1− yc) log(1− pc) (3)

where M is number of unique classes and pc is the output of the
final sigmoid layer of class c. As shown in Fig. 1, we use modified
binary ArcFace to assist the training of the network in addition to

Stage Detail

Conv1 3× 3, 64, BN, ReLU
Conv2 3× 3, 64, BN, ReLU, AvgPool(2)
Conv3 3× 3, 128, BN, ReLU
Conv4 3× 3, 128, BN, ReLU, AvgPool(2)
Conv5 3× 3, 256, BN, ReLU
Conv6 3× 3, 256, BN, ReLU, AvgPool(2)
Conv7 3× 3, 512, BN, ReLU
Conv8 3× 3, 512, BN, ReLU

Table 1: Kernel size, number of neurons, and additional normaliza-
tion, activation or pooling layers in each stage
of the backbone CNN.

Focal loss. The binary ArcFace is defined as

LArcFace =−
∑
c∈Cpos

log
1

1 + es(cos(θyc+m))

−
∑

c′∈Cneg

log
1

1 + es cos θyc′

(4)

where Cpos and Cneg are the sets of positive and negative classes of
each sample, respectively. Modifications are made due to the multi-
label nature of our task. Please refer [4] for details about other
terms such as θ, s and m. Notice that s and m are tunable hyperpa-
rameters. Originally, ArcFace is a modified cross-entropy loss that
aims to enlarge the margins between different classes. The loss is
primarily used in face recognition tasks under multi-class classifi-
cation settings. There are two main reasons we combine ArcFace
with Focal loss in a multi-label classification task.

First, the outputs of g range from 0 and 1, not binary labels as
the ground truth labels for curated data. [9] chooses 0.4 to be the
threshold to convert the outputs into binary labels without detailed
explanation. One of the goals of using ArcFace is to make the value
of the threshold insensitive. We believe that, by enlarging the mar-
gin between positive and negative cases in each class, the binary
pseudo-labels generated by g is less likely sensitive to the thresh-
old. And thus the pseudo-labels are more trustworthy. Instead of
0.4, we choose the threshold η to be 0.5, but the difference is min-
imum. Second, [4] suggests that ArcFace applies smaller penalty
towards hard samples than other large-margin losses. This makes
ArcFace favorable in our system because we don’t want the network
to optimize on incorrect pseudo-labels.

The final loss we used to train the neural network is defined as∑
(xv,yv)∈V ′×yV ′

(
LFocal(g(f(xv)), yv) + LArcFace(g(f(xv)), yv)

)

+
∑

(xu,yu)∈U′×yU′

(
LFocal(h(f(xu)), yu) + LArcFace(h(f(xu)), yu)

)
(5)

2.6. Network Training

Following [9], we first warm up the backbone CNN in our model by
a supervised task using samples from the noisy set. The weights of
the backbone CNN is updated iteratively using the augmented batch
of noisy samples Ŵ and the corresponding noisy labels yW . The
batch size is set to 64. Due to the competition baseline, pretraining
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Symbol Detail Value

mf No. of frequency masks in SpecAugment 2

mt No. of time step masks in SpecAugment 2

pf Parameter in the uniform distribution that 0.1
determines the size of each frequency mask

pt Parameter in the uniform distribution that 0.1
determines the size of each time step mask

η Threshold to determine pseudo-labels 0.5

α Parameter to determine the Beta distribution 0.4
used in mixup

s Hyperparameter used in ArcFace to scale 30
up normalized weight matrix

m Hyperparameter used in ArcFace to create 0.5
large margin

NV Batch size of curated set V 6

NW Batch size of noisy set W 58

w1 No. of epochs that takes the learning rate to 10
ramp up in training stage 1

w2 No. of epochs that takes the learning rate to 15
ramp up in training stage 2

l1 No. of epochs that takes the learning rate to 90
be annealed to 0 in training stage 1

l2 No. of epochs that takes the learning rate to 285
be annealed to 0 in training stage 2

Table 2: Symbol, detail explanation and value of each hyperparam-
eter used in both training stages

models using the noisy set only is considered as a way to battle the
domain mismatch.

At the second stage of training, we train the backbone, g and h
jointly using the loss defined in (5). We set NV = 6 and NW = 58
so the batch size of each iteration is still NV +NW = 64. In both
stages of training, we use Nadam as the gradient optimizer, and
Cosine Annealing Learning Rate with Warm Start as the learning
rate scheduler [11] [12]. Specifically, we first linearly ramp up the
learning rate from 0 to 0.0035 in w epochs, then gradually anneal
the learning rate to 0 in l epochs. We set w and l differently in the
first and second stage of training. A detailed list of hyperparameters
is given in Table 2.

2.7. Inference

The inference step is performed using Kaggle kernel. Data process
and inference have to be finished in 1 hour if GPU is used. To
accelerate the procedure, we use GPU-enabled torchaudio package
to remove silence and convert the audio files in test set to log-mel
spectrogram. We do not need the label cleaning head g and the
weights used to compute ArcFace in h. Therefore, the inference
system keeps only the backbone and the classification head h with
the weights for computing Focal loss. It reduces the total number
of parameters in the system.

Unlike the data generating procedure during the training phase,
we extract patches using a sliding window with hop size of 16

frames (0.25s). For audio clips less than 3s, we again pad them
to 192 frames repeatedly. The typical way to make the final pre-
diction for each audio clip is to take the average (arithmetic or ge-
ometric) of all patches extracted from the clip. However, we could
only extract small number of patches from video clips with short
duration. This leads to less generalized predictions of short video
clips. To deal with this, we apply test-time augmentations using
SpecAugment to audio clips with no more than 7 patches extracted
using sliding window so that at least 10 patches are generated for
each short clip. This is implemented by repeat the sliding window
extraction k more times with SpecAugment, where k is defined as

k =



9 if no. of patches = 1

5 if no. of patches = 2

3 if no. of patches = 3

2 if no. of patches = 4

2 if no. of patches = 5

1 if no. of patches = 6

1 if no. of patches = 7

(6)

After collecting the augmented batch Ẑ, we reverse the time
steps of every log-mel spectrogram patch in it, and name the time-
reversed batch Z̃. The prediction of each patch xz ∈ Ẑ is made by
the arithmetic average of the xz’s sigmoid output of the original 80
classes and x̃z’s sigmoid output of the reversed 80 classes, where
x̃z ∈ Z̃.

3. ENSEMBLE AND RESULT

In section 2 we describe the approach used to build a single system.
The single system generates the submission file reaches 0.712 lwl-
rap on public test set. Two more systems use ensemble to further
improve the performance. The details about each system are shown
below

• Zhang BIsmart task2 1.output.csv: 5 CV averaging + 7
fine-tuned systems based on public Kaggle kernels. The hop
size of sliding window for inference is 0.4s. The ensemble sys-
tem reaches 0.730 lwlrap on public test set.

• Zhang BIsmart task2 2.output.csv: The system above plus
a single system trained on the whole training set. The hop size
of sliding window for inference is 0.4s. The ensemble system
reaches 0.729 lwlrap on public test set.

• Zhang BIsmart task2 3.output.csv: Single system trained
on the entire training set. The hop size of sliding window for
inference is 0.25s. The system reaches 0.712 lwlrap on pub-
lic test set. This submission is used as the candidate for the
Judges’ Award.
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