
Detection and Classification of Acoustic Scenes and Events 2020 Challenge

DCASE 2020 CHALLENGE TASK2 TECHNICAL REPORT

Unsupervised Detection of Anomalous Sounds for Machine Condition Monitoring

Vipin K Agrawal Shiv Shankar Maurya

Milpitas, CA 95035 USA
vagrawal@msense.ai

Bangalore, KN 560105 India
ssmaurya@msense.ai

ABSTRACT

Autoencoders are a very popular approach in detecting anomalies
in a system, where reconstruction error is generally used as an
anomaly score. However, the reconstruction errors, generated in
such manners, contain external noises of the system, making
reconstruction errors as anomaly scores less effective. In this brief,
we present an additional hypothesis that autoencoders may
introduce additional statistical noise in the reconstruction errors as
well.
Our proposal includes a design of an autoencoder, lays out a
theoretical basis of designing a noise filter for reconstruction
errors, and outlines various aggregation methods to reduce the
effect of the noise. While further work is still needed, we are able
to show the accuracy improvement by using various aggregation
methods.

1. INTRODUCTION

Anomaly detection is a field of detecting outlier data indicating
deviation from the normal behavior with generally some bad
connotation. Anomalous events happen relatively infrequently but
are disastrous in nature.

A popular approach in deep learning-based anomaly detection is
to build a deep learning model, Autoencoder, to reduce the
dimensionality of the data, and then reconstruct the input sample.
An autoencoder belongs to a family of machine learning models,
called neural networks, and more specifically deep neural
networks. An autoencoder consists of an encoder, and a decoder.

	

And anomalous event is when anomaly score 	𝐴# is more than a
threshold 𝑡ℎ:

𝒇 = 	 (𝟎, 𝒏𝒐𝒓𝒎𝒂𝒍					𝒊𝒇	𝑨𝒏 < 	𝒕𝒉
𝟏, 𝒂𝒏𝒐𝒎𝒂𝒍𝒚	𝒊𝒇	𝑨𝒏 ≥ 𝒕𝒉 	

The encoder maps a input vector 𝑋# into a hidden representation
𝑍#. The decoder tries to reconstruct the sample back to vector 𝑋#.
The difference between 𝑋#	 and 𝑋# is called reconstruction error.

reconstruction error 𝐴# = 𝑓(𝑋#	 - 𝑋#)

Reconstruction error can be treated as an anomaly score 𝐴#

The following issues may arise in the above system:

A. An autoencoder network may be able to learn anomalies
equally well with perfect reconstruction, or anomalies
and normal events are represented by the network with
very close reconstruction errors.	

This issue can be solved by developing an effective
autoencoder architecture and training it by providing
ample amounts of training data. Training data can also
be augmented to increase the accuracy of the system.

B. Presence of external noises may adversely affect the
reconstruction error of the system. 𝑋# is inherently noisy,
and depending on the deployment, may affect the
anomaly score for the given samples.

If the signal-to-noise ratio (SNR) is high, there are
methods to solve this issue using digital signal
processing or machine learning based approaches.
However, this issue requires a system approach to solve
the problem if SNR is low, for example calculating
anomalies over a longer period of time to filter out the
short-term noises.

C. The presence of internal noise in an autoencoder means
that the output of the autoencoder 𝑋#	 is noisy.

Detection and Classification of Acoustic Scenes and Events 2020 Challenge

This issue can be solved by A) properly training the
autoencoder, B) by regularizing the training process,
and C) by analyzing the data over a longer time etc.

Because of the noise as mentioned above, the anomaly detection
system may be updated as the following:

	

2. AUTOENCODER ARCHITECTURE

The proposed autoencoder is inspired by the Wavenet
architecture. It consists of an encoder and a decoder with a
bottleneck layer and a self-attention layer. Unlike the Wavenet
architecture, all time steps are preserved in the bottleneck layer.

* Input features
As in the baseline system, we use a log-mel-spectrogram of the
input 𝑋#

● FFT calculation over 4096 or 8192 samples depending
on the machine type, mentioned in the challenge.

● Analysis frame size 64 ms
● Log mel-band energy bands fn: 128 bands
● Input time-steps to the autoencoder ts: 4 or 32 Analysis

frames depending on the machine type.

* Hyperparameters
The following are the additional model parameters apart from ts
and fn

● Number of layers M
● Number of bottlenecks bn
● Use machine ID or not at the bottleneck layer.

3. NOISE FILTERS AND AGGREGATION METHODS

Developing effective noise filters are dependent on a deployment
and other factors. For lack of time, we have not investigated the
effective noise filters, and ML based approaches to noise filtering
yet. However, following anomaly scores are evaluated and
manually selected.

A. Calculate the Mean Square Error over the complete
sample (default and state-of-art)	

𝑴𝑺𝑬 =	
𝟏
𝑵
B(
𝑵

𝟏

𝑿𝒏 − 𝑿𝒏)𝟐

Where N is the number of the frames per sample.

B. Calculate the Median Square Error – this allows to
filter sudden onset of the excessive noise for a short
duration.	

	𝑀𝑒𝑑𝑖𝑎𝑛(𝑋# 		− 𝑋#)L

C. The proposed error E1 calculation which involves
adding the frequency mel bands over all the frames
per sample, and then calculating MSE.	

𝑬𝟏 =	
𝟏
𝑵𝑳

BNB𝑿𝒏 − 𝑿𝒏

𝑵

𝟏

O

𝟐𝑳

𝟏

Where N is number of frames per sample, and L is the
number of the log-mel-bands. This is helpful if the
present noise in the system behaves like the white noise,
and cancels itself over the period of time, resulting in
only minor left-over noise in all of the bands.

D. The proposed error E2 calculation which involves
adding frequency bands over all of the frames, and
then calculating the mean absolute error (MAE) over
all frequency bands. 	

𝐸2 = 	
1
𝑁𝐿

BUB𝑋# − 𝑋#

V

W

U
X

W

	

Where N is number of frames per sample, and L is the
number of the log-mel-bands. This is helpful if the noise
present in the system behaves like white noise and
cancels itself over a period of time, and still there is
significant left-over noise in one or more of the bands.

Detection and Classification of Acoustic Scenes and Events 2020 Challenge

4. RESULTS

Baseline results are generated after running for 100 epochs.

Table 1. Baseline results

Machine Type AUC pAUC Loss

ToyCar 78.77 67.58 MSE

ToyConveyor 72.53 60.43 MSE

Fan 65.83 52.45 MSE

Pump 72.89 59.99 MSE

Slider 84.76 66.53 MSE

Valve 66.26 50.98 MSE

All the machine types were trained for 500 epochs with early
stopping patience of 50 epochs, and run on the test data.

Table 2. Accuracy results using proposed scheme

Machine Type AUC pAUC Loss

ToyCar 95.64 85.99 E2
ToyConveyor 86.52 70.81 E2
Fan 86.71 70.58 E1
Pump 88.71 72.04 E1
Slider 92.36 76.11 E1
Valve 88.61 75.34 MSE

Table 3. Improvements

Machine Type AUC pAUC

ToyCar 16.87 18.41
ToyConveyor 13.99 10.38
Fan 20.88 18.13
Pump 15.82 12.05
Slider 7.6 9.58
Valve 22.35 24.36

5. REFERENCES

[1] http://dcase.community/workshop2020/.
[2] Adversarially Learned Anomaly Detection

(https://arxiv.org/pdf/1812.02288.pdf)
[3] Unsupervised Detection of Anomalous Sound based on Deep

Learning and the Neyman-Pearson Lemma
(https://arxiv.org/pdf/1810.09133.pdf)

[4] Noise Reduction Using Minimum Mean Square Estimators
(MMSE) (https://www.vocal.com/noise-reduction/minimum-
mean-square-estimators)

[5] Yuma Koizumi, Shoichiro Saito, Hisashi Uematsu, Noboru
Harada, and Keisuke Imoto. ToyADMOS: a dataset of
miniature-machine operating sounds for anomalous sound
detection. In Proceedings of IEEE Workshop on Applications
of Signal Processing to Audio and Acoustics (WASPAA),
308–312. November 2019. URL:
https://ieeexplore.ieee.org/document/8937164.

[6] Harsh Purohit, Ryo Tanabe, Takeshi Ichige, Takashi Endo,
Yuki Nikaido, Kaori Suefusa, and Yohei Kawaguchi. MIMII
Dataset: sound dataset for malfunctioning industrial machine
investigation and inspection. In Proceedings of the Detection
and Classification of Acoustic Scenes and Events 2019
Workshop (DCASE2019), 209–213. November 2019. URL:
http://dcase.community/documents/workshop2019/proceedin
gs/DCASE2019Workshop_Purohit_21.pdf.

[7] Yuma Koizumi, Yohei Kawaguchi, Keisuke Imoto, Toshiki
Nakamura, Yuki Nikaido, Ryo Tanabe, Harsh Purohit, Kaori
Suefusa, Takashi Endo, Masahiro Yasuda, and Noboru
Harada. Description and discussion on DCASE2020
challenge task2: unsupervised anomalous sound detection for
machine condition monitoring. In arXiv e-prints:
2006.05822, 1–4. June 2020. URL:
https://arxiv.org/abs/2006.05822.

[8] WaveNet: A Generative Model for Raw Audio
(https://arxiv.org/abs/1609.03499)

[9] J. Chorowski, R. J. Weiss, S. Bengio and A. van den Oord,
"Unsupervised Speech Representation Learning Using
WaveNet Autoencoders," in IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 27, no. 12, pp.
2041-2053, Dec. 2019, doi: 10.1109/TASLP.2019.2938863.

[10] A. Polyak and L. Wolf, "Attention-based Wavenet
Autoencoder for Universal Voice Conversion," ICASSP 2019
- 2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Brighton, United Kingdom,
2019, pp. 6800-6804, doi: 10.1109/ICASSP.2019.8682589.

[11] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009.
Anomaly detection: A survey. ACM Comput. Surv. 41, 3,
Article 15 (July 2009), 58 pages.
DOI:https://doi.org/10.1145/1541880.1541882

[12] Chong Zhou and Randy C. Paffenroth. 2017. Anomaly
Detection with Robust Deep Autoencoders. In Proceedings
of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’17).
Association for Computing Machinery, New York, NY,
USA, 665–674.
DOI:https://doi.org/10.1145/3097983.3098052

[13] Ruoying Wang, Kexin Nie, Tie Wang, Yang Yang, and Bo
Long. 2020. Deep Learning for Anomaly Detection. In
Proceedings of the 13th International Conference on Web

Detection and Classification of Acoustic Scenes and Events 2020 Challenge

Search and Data Mining (WSDM ’20). Association for
Computing Machinery, New York, NY, USA, 894–896.
DOI:https://doi.org/10.1145/3336191.3371876

