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ABSTRACT

We develop an ensemble-based approach for our submission to the
anomaly detection challenge at DCASE 2020. The main members
of our ensemble are auto-encoders (with reconstruction error as the
signal), classifiers (with negative predictive confidence as the sig-
nal), mismatch of the time-shifted signal with its Fourier-phase-
shifted version, and a Gaussian mixture model on a set of com-
mon short-term features extracted from the waveform. The scores
are passed through an exponential non-linearity and weighted to
provide the final score, where the weighting and scaling hyper-
parameters are learned on the development set. Our ensemble im-
proves over the baseline on the development set.

Index Terms— Anomalous sound detection, auto-encoders,
classifiers

1. INTRODUCTION

To identify machines in failure states, human experts can moni-
tor the sound emitted from the machines and raise an alarm if an
anomalous sound indicates potential failure. However, performance
from experts has been shown to be influenced by many factors such
as emotion, health condition, and experience. Automatically identi-
fying mechanical failure can therefore be very useful and a scalable
solution.

In practice, real anomalies are rare and highly diverse. There-
fore, it is hard to collect sufficiently large and representative sam-
ples of anomalous sounds, many of which might be unprecedented
in real life. This means that in practice we would have to detect
anomalous sounds that are likely unobserved in a training dataset.

Anomalous sound detection (ASD) is a well-known topic and
has been studied for a long time, and various approaches have been
investigated. In early studies, acoustic features for detecting anoma-
lies are hand-crafted based on the characteristics of the target ma-
chine. Benefiting from the development of deep learning, deep neu-
ral network-based methods that do not require extensive knowledge
of the features for machine sounds have also been actively studied.

We propose an ensemble-based approach in our submission for
the task. We use auto-encoders with reconstruction errors as the
signal, a self-predictive heuristic involving the shift theorem in sig-
nal processing, and a Gaussian mixture model on a set of com-
mon short-term features extracted from the waveform. The scores
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are combined with an exponential non-linearity and weighted to
provide the final score, where the weighting and scaling hyper-
parameters are learned on the development set. The reason we chose
an ensemble approach is that we found different models to perform
at different relative strengths for different machine types as well as
machine IDs. Our ensemble improves the performance for ASD
task compared to the baseline on the development dataset.

2. PROBLEM STATEMENT

DCASE 2020 Challenge Task 2’s goal is to identify whether the
sound emitted from a target machine is normal or anomalous. The
main challenge of this task is to detect unknown anomalous sounds
under the condition that only normal sound samples have been pro-
vided as training data, while samples of known anomalous sounds
may be used for model selection and hyper-parameter tuning.

Let an L-point-long-time-domain observation x ∈ RL be an
observation which includes a sound emitted from the target ma-
chine. Our task is to identify from this sequence whether the state of
the target machine is normal or anomalous. The waveform includes
background noise, which makes things harder, since now we must
learn to attend to the machine alone when judging its state.

To perform anomaly detection, typically one needs to produce
an anomaly score Sθ(x), parameterised by θ, such that a larger
score implies increased probability that the input signal is anoma-
lous. The target is determined to be anomalous when the anomaly
score Sθ(x) exceeds a determined threshold φ:

Decision =

{
Anomalous, if Sθ(x) > φ
Normal, otherwise

The data used for this task comprises parts of ToyADMOS [1]
and the MIMII Dataset [2] consisting of normal and anomalous op-
erating sounds of two types of toys and four types of real machines.
The anomalous sounds in these datasets were collected by deliber-
ately damaging the target machines. The following six types of toy
and real machines are used in this task: TOYCAR and TOYCON-
VEYOR from ToyADMOS, and FAN, PUMP, SLIDER, and VALVE
from the MIMII Dataset. For simplifying the task, only the first
channel of multi-channel recordings are provided; all recordings
are regarded as single-channel recordings of a fixed microphone.
Each recording is a single-channel approximately 10-sec length au-
dio that includes both a target machine’s operating sound and envi-
ronmental noise. The sampling rate of all signals has been down-
sampled to 16 kHz. The Machine ID is defined as the identifier of
each individual of the same type of machine, which in the training
dataset can be of three or four and that of test dataset can be three.
Development dataset includes (i) around 1,000 samples of normal
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sounds for training and (ii) 100–200 samples each of normal and
anomalous sounds for the test for each Machine Type and Machine
ID. Evaluation dataset consists of around 400 test samples for each
Machine Type and Machine ID, none of which have a condition la-
bel. The Machine IDs of the evaluation dataset are different from
those of the development dataset. Thus, additional training dataset
is also provided with around 1,000 normal samples for each Ma-
chine Type and Machine ID used in the evaluation dataset.

The task is evaluated using the area under the curve (AUC)
of the receiver operating characteristic (ROC), and partial-AUC
(pAUC). The pAUC is AUC calculated from a portion of the ROC
curve over a pre-specified range of interest. Evaluation with pAUC
is practically motivated: if an ASD system produces false alerts
frequently, it causes more unnecessary expense. Therefore, it is es-
pecially important to increase the true-positive rate under low FPR
conditions. In this task, p = 0.1 is used for this evaluation.

3. APPROACH

In this section, we first describe the members of our ensemble sepa-
rately, and then describe how these are combined for the final scor-
ing.

3.1. Autoencoders

We make use of the baseline auto-encoding model released by [2].
This is an MLP based autoencoder that compresses 5 frames of
128 mel-energies into an 8-dimensional space, with BatchNorm and
ReLU non-linearities, and trained with Adam. Based on this model,
we also add another similar autoencoding model, by only replacing
linear layers with residual linear layers, keeping everything else the
same. The normality signal is the mean squared reconstruction loss
as is usual.

Sae(x) = ||x− reconstruction(x)||2. (1)

3.2. Classifiers

One of the key issues with practical anomaly detection for high-
dimensional noisy data is that the models must be aware of what
deviations constitute an indication of an anomalous situation in the
context of interest [3]. For example, a density-based model might
find a sudden loud voice in the background as a low-likely event
if it has not encountered such events before. But a ideal, context-
aware, anomaly detector for machine failure should know to attend
solely to the sound of the machine, and raise an alarm only when
the input sound indicates machine failure, regardless of variations
in the background.

This suggests that providing discriminative information is
likely to result in a predictive distribution upon a semantically-
aware feature space. Since the provided dataset mixes in noise ran-
domly with the machine sound, we expect that a classifier that dis-
criminates between various machine types, or one that recognises a
particular machine’s sound from among others, would lead to more
informative predictive distributions for anomaly detection [4]. An
added advantage of a classifier that discriminates between various
machines is that it can be reused for each of the machines separately
without needing separate training. Based on these intuitions, we
add four classifier models to our set of models: a linear 6-way clas-
sifier that predicts machine type from 32 5-frame mel-energies and
a convolutional 6-way ResNet classifier that also predicts machine
type from 128 5-frame mel-energies; a linear binary classifier that

discriminates a specific machine from all others using 32 5-frame
mel-energies and a convolutional ResNet binary classifier that does
the same using 128 5-frame mel-energies.

We use 2 sets of tricks in our classification based models,
which originate in developments in the literature about out-of-
distribution/anomaly detection, and includes some of our own in-
tuitions. These tricks are as follows.

1. Softmaxes tend to saturate, and as they do, it becomes harder
to use the predictive confidence as a differential signal. To
minimise this issue, we use a high L2 penalty on the weight
matrix used to compute the logits. We also scale the logits,
as suggested in [5], with a high temperature.

2. Existing works using predictive softmax confidences tends
to use the maximum softmax value, regardless of the predic-
tion this implies, which makes sense in a multi-class context.
Since in our setting, we are interested in modelling a partic-
ular class at a time, we use the predictive confidence corre-
sponding to the particular class of interest, for our models
that are trained to categorise machine type.

Sclassifier(x) = −p(y = machine|x). (2)

3.3. GMM on hand-crafted features

We learned a GMM on 34 short-term audio features using [6].
The time-domain features (features 1–3) are directly extracted from
the raw audio waveform. The frequency-domain features (features
4–34, apart from the MFCCs) are based on Discrete Fourier Trans-
forms (DFT). The cepstral domain (e.g. used by the MFCCs) results
are acquired after applying the Inverse DFT on the logarithmic spec-
trum. In addition to these features, we also include mean, max, min,
and covariance features from sliding windows of the raw waveform.

3.4. Phase-shift discrepancy

One of the members in our ensemble is a parameter-free self-
predictive heuristic based on the shift theorem in signal processing.
We select 3-second snippets from a given audio clip, and predict
a ∆-time-shifted version through the equivalent phase-shift in the
Fourier domain. This is then contrasted with the actual audio at the
selected time in the future. More concretely, we first perform an
FFT transform on the the clip x(t),

x(f) = FFT[x(t)], (3)

followed by a phase-shift corresponding to a time-shift of ∆,

x∆(f) = e−j2πf∆x(f), (4)

and then return to the time-domain via the inverse transform

x̂(t−∆) = Inverse-FFT[x∆(f)]. (5)

The normality signal we use is the L1 difference in prediction,

Sf = ||x̂(t−∆)− x(t−∆)||1. (6)

While this method does not sidestep the potential issue of unex-
pected background noise being a confounding factor, we find it to
help for certain machine types. In general, it is plausible that a ma-
chine obeying a certain periodicity might be diagnosed as being in
an anomalous condition when the periodicity suddenly breaks.
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(a) ToyCar (b) ToyConveyor (c) fan (d) pump

(e) slider (f) valve

Figure 1: Relative performances of our models on the development set. We find that different models perform with different strengths for
different machines, and furthermore (not shown in figure) they perform with similar variance for different IDs.

3.5. Combining scores

While our classifier based scores are bounded in [0, 1], being predic-
tive confidences from a softmax, the other scores, while positive, are
typically not bounded by 1. In order to bring these scores to a com-
parative range and spread, we learn a 2-hyperparameter non-linear
transform, λ expS(x)/t, where λ and t are set through tuning on
the development set. To add the same degrees of freedom to the
classifier-based methods, we also learn the same hyper-parameters
for scores from these models. The final score is therefore computed
as

Sensemble =
∑
−λm exp

−S(x)

tm
, (7)

where m indexes a member of the ensemble.

4. EXPERIMENTS AND DEVELOPMENT RESULTS

4.1. Architecture and training details

4.1.1. Mel features

As in the provided baseline method, we used sliding windows on
log-Mel spectrograms (with an energy-transform) of the audio as
the input features for the models in our ensemble (with the excep-
tion of the phase-shift and GMM method). As in the provided base-
line, we used a framesize of 1024, a hop size of 512 and 128 mel
filters.

4.1.2. Autoencoders

The baseline model is a reimplementation of [2], where the encoder
and decoder are both 4-layer MLPs with 128 dimensions, along
with BatchNorm and ReLU activations. The latent dimension is
8. Training is done with Adam, using a learning rate of 1e-3 for 100
epochs.

The additional autoencoder we add to the ensemble is exactly
the same, with the difference that the linear layers are replaced with
residual linear blocks. For both models, we also preprocess the
inputs by scaling and shifting with the mean and variance.

We train 3 runs of all autoencoder models, and average their
scores (using the same λ and t parameters for all runs).

4.1.3. Classifiers

Our linear classifier consists of 4 linear residual blocks with 128
dimensions per linear layer, and BatchNorm+ReLU. We find that
using more frames and higher mel-energies lead to improved per-
formance, and so we use 256 frames from the mel-spectrogram per
datapoint, and the last 32 energies of the 128 that are extracted. We
add a coefficient of 0.5 for the L2 penalty on the weight matrix
for the logits, and scale the logits by a temperature of 1e3 when
computing the predictive confidence. We train with Adam for 50
epochs, with an initial learning rate of 1e-4, which we scale by 10
at the 10-th, 30-th, and 40-th iterations. We use 3 of

Our ResNet-based classifier has the following architec-
ture: CONV → RESIDUALBLOCK(stride=2) → RESIDUAL-
BLOCK(stride=2) → RESIDUALBLOCK → RESIDUALBLOCK
(+BatchNorm+ReLU) → SPATIAL MEAN-POOL → LINEAR. All
blocks use 16 channels. We find that using fewer frames and all
mel-energies lead to improved performance for this model, and so
we use 5 frames from the mel-spectrogram per datapoint. We add
a coefficient of 0.5 for the L2 penalty on the weight matrix for the
logits, and scale the logits by a temperature of 1e3 when comput-
ing the predictive confidence. We train with Adam for 10 epochs,
with a learning rate of 1e-4. Compared to the linear classifier, we
train for fewer epochs because every epoch now consists of far more
datapoints, since we use 5 frames instead of 256 per spectrogram.

We use the same architectural and training details to train two
sets of these classifiers. One set trains both for a 6-way classification
task, to predict the machine types. The other set trains for a binary
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Feature ID Feature Name

1 Zero Crossing Rate
2 Energy
3 Entropy of Energy
4 Spectral Centroid
5 Spectral Spread
6 Spectral Entropy
7 Spectral Flux
8 Spectral Rolloff
9-21 MFCCs
22-33 Chroma Vector
34 Chroma Deviation
35-38 Mean, Max, Min, Covariance of the waveform

Table 1: Hand-crafted features used for the GMM

classification task, to predict a particular machine type against all
others.

We train 3 runs of all classifier models, and average their scores
(using the same λ and t parameters for all runs). Due to lack of
time, in our submission, we only have one run for the convolutional
one-vs-all classifier.

4.1.4. GMM on short-term audio features

Our GMM consists of 10 mixture components, with full covari-
ance matrices. We use 38 features with 5 frame-stacking, such
that each datapoint is a vector of length 190. In Table 1, we list
the features. We used the Python library PYAUDIOANALYSIS at
https://github.com/tyiannak/pyAudioAnalysis for extracting these
features.

4.2. Development set results

We find the best λm and tm per model from searching over a grid
of

λm = {0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10, 50, 100, 1000, 10000},

and

tm = {0, 0.01, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 1000}.

Since a complete grid search would involve searching over 1568

settings per machine, we use a random grid search instead, testing
2000 random settings per machine.

In Figure 1, we show relative performances of all our models
on all of the machines. We find that different models perform with
different strengths for different machines. While the figure does not
show it, we found that different models perform particularly differ-
ently for specific IDs in the dataset. This was another motivating
reasons for us to adopt an ensemble approach.

In Figure 2, we show that we outperform the baseline using our
ensemble of models.

5. CONCLUSION

We find that ensemble approaches can be effective at improving
performance at practical anomaly detection tasks, since different
models can excel at capturing different nuances of data. While this

Figure 2: Performance of our ensemble on the development set.
While we outperform the baseline for all machine types, we do not
appreciably improve for TOYCONVEYOR and SLIDER.

comes at the cost of a memory overhead, given that hardware mem-
ory costs continue to decrease and that the potential benefits involve
early detection of machine failure and potentially replacing error-
prone human labour, the overhead might be worth it in a cost-benefit
analysis.
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