An Ensemble Approach to Unsupervised Anomalous Sound Detection

Jahangir Alam, Gilles Boulianne, Vishwa Gupta, Abderrahim Fathan

Computer Research Institute of Montreal, Canada

jahangir.alam,gilles.boulianne, vishwa.gupta, abderrahim.fathan@crim.ca

Abstract

The task of anomalous sound detection (ASD) is to determine
whether an observed sound is anomalous or normal. Both su-
pervised and unsupervised approach can be adopted for the
ASD task. In supervised approach anomalous and normal data
are used in training whereas in unsupervised approach only nor-
mal data are used for training. In this work, we provide an
overview of the systems developed for the task 2 i.e., unsu-
pervised detection of anomalous sounds for machine condition
monitoring, of the DCASE 2020 challenge. We employ vari-
ous handcrafted local representations from the short-time spec-
tral analysis of sounds. We also use fisher vector encoding -
a learned global representations obtained from local represen-
tations of sound. Autoencoder variants and copy detection ap-
proaches are applied on the top of local representations and a
standard GMM classifier is used with fisher vector encodings
for unsupervised detection of anomalous sounds.

Index Terms: unsupervised anomaly detection, DCASE 2020
Challenge, autoencoder, GMM, copy detection, fisher vector.

1. Introduction

Anomalous sounds are referred to as sound data that deviate sig-
nificantly from the majority of normal sound data. The objec-
tive of anomalous sound detection is to distinguish anomalous
sounds from the normal sounds. Detection of anomalous sound
has received much attention recently as it has various impor-
tant applications such as audio surveillance, animal husbandry,
product inspection, predictive maintenance and monitoring of
machine condition. Prompt detection of machine anomaly by
observing its sounds can possibly prevent propagation of dam-
age, decrease the number of defective products and can be use-
ful for monitoring the machine condition for predictive mainte-
nance.

Based on the availability of anomalous data in the train-
ing phase ASD task can be categorized as supervised ASD and
unsupervised ASD. Compared to supervised ASD the unsuper-
vised ASD is much more realistic as it does not use anomalous
sound data in training time. This is because making and/or col-
lecting an exhaustive set of anomalous sounds is impossible.
Besides, in real-world factories, actual anomalous sounds occur
rarely and are very diverse. Considering the above, this year,
the DCASE (Detection and Classification of Acoustic Scenes
and Events) challenge organizers introduced a very challenging
task known as “unsupervised-ASD”. This indicates that the par-
ticipants have to detect anomalous sounds that are not seen in
the training data.

Various supervised and unsupervised approaches have been
investigated for the detection of anomalous sounds. Many ear-
lier works focused on the extraction of discriminative sound fea-
tures by effective capturing of artifacts present in the anomalous
sounds. Different feature-extractor-optimization methods have
been studied in the past. In earlier studies, various statistical

models such as GMM (Gaussian Mixture Models), SVM (Sup-
port Vector Machine) were used for computing anomaly scores.
Some recent studies used deep learning based techniques such
as autoencoders, variational autoencoders, one class neural net-
works, and generative adversarial networks (GANs) for sound-
based anomaly detection. In the case of autoencoders, it is
trained to minimize the reconstruction error of the normal train-
ing data, and the anomaly score is calculated as the reconstruc-
tion error of the observed sound. Thus, the autoencoder yields
small anomaly scores for normal sounds and large scores for
unseen anomalous sounds as these are not used in training.

In this work, for the challenging task of unsupervised
anomalous sound detection, we employ different local (i.e.,
frame level) and global (i.e., sound level) representations of
sound and use autoencoder variants and standard GMM clas-
sifier for calculating anomaly scores from the observed sounds
in the development and evaluation test sets. The following
local representations are used by short-time spectral analysis
of the sounds: Log Mel-frequency spectrum, Mel-frequency
cepstral coefficients (MFCC), Linear frequency cepstral coef-
ficients (LFCC), product spectral cepstral coefficients (PSCC),
and modulation spectrum. Fisher vector encodings extracted
on top of LFCC features are used as global representations. A
standard GMM classifier is used with fisher vectors for comput-
ing anomaly scores. With local features, various deep learning-
based approaches such as simple autoencoder (AE), variational
autoencoder (VAE), conditional VAE, and LSTM autoencoder
(LAE) are employed to calculate anomaly scores. We also adopt
the copy detection algorithm proposed in [1] for unsupervised
anomalous sound detection (UASD) task.

2. Dataset and Task
2.1. DCASE 2020 Challenge Task 2 Database

The database used for task 2 of DCASE 2020 challenge [2] was
derived from the ToyADMOS [3] and the MIMII [4] corpora.
The entire database, comprised of normal/anomalous operating
sounds of six types of toy/real machines, is divided into de-
velopment (train and test) and evaluation (train and test) sub-
sets. Training sets contain only normal data and only the la-
bels (normal versus anomalous) of development test set were
released to the participants. Among the six toy/real machines,
the ToyCar and Conveyor machines database were taken from
ToyADMOS, and valve, pump, fan, and slider database came
from MIMII Dataset. Each recording is a single-channel hav-
ing duration of approximately 10-sec that includes both a target
machine’s operating sound and environmental noise. Each ma-
chine type (e.g., ToyCar) has several individual machines with
separate identifiers known as machine IDs. Machine types and
machine IDs for both development and evaluation sets were re-
leased to the participants. For more details about the DCASE
2020 challenge Task 2 data the readers are referred to [2, 3, 4]

2.2. Challenge Task

In this new task, no anomalous sounds data were made available
for training the model. So, the main challenge of this task is to
identify unknown anomalous sounds under the condition that
only normal sound samples can be used in training.

3. Representations of Sound
3.1. Local Representations of Sound

By local representations of sound we mean acoustic features
typically extracted at 10 ms (or several multiples of it) intervals
and designed to detect artifacts in the anomalous sounds. In this
work, the following local representations are used by short-time
spectral analysis of the sounds: Log Mel-frequency spectrum,
Mel-frequency cepstral coefficients (MFCC), Linear frequency
cepstral coefficients (LFCC), product spectral cepstral coeffi-
cients (PSCC), and modulation spectrum [5, 6, 7, 8, 9, 10].

3.2. Global Representations of Sound

By global representations we mean utterance level embeddings
extracted using the short-time features. Here, we use fisher
vector encodings as the global representations of sounds. The
Fisher vector (FV) encoding was originally introduced and is
popularly used in computer vision applications, especially in
large scale image retrieval [11, 12, 13]. The FV with cascaded
non-linear normalization has been further applied to classify the
eating condition of a speaker from her/his recording for the In-
terspeech 2015 computational paralinguistic challenge [14]. In
[15], we used fisher vector encoding-based global representa-
tion for voice anti-spoofing task.

The main idea behind such encoding is to measure the
amount of change induced by the utterance/video descriptors
on a background probability model, which is typically a Gaus-
sian Mixture Model (GMM). Fisher vector encodes the amount
of change of model parameters to optimally fit the new-coming
data. This requires the computation of the Fisher information
matrix, which is the derivative of the log-likelihood with respect
to model parameters. FV require a smaller number of compo-
nents in a GMM when compared to i-vectors.

The FV encoding assumes that descriptors are generated by
a GMM model with a diagonal covariance matrix. Initially, a
K-Gaussians GMM is trained. The GMM model is parame-
terized as A = {wy, ,uk,ak}kK:l, where wg, p, and o rep-
resent the mixture weights, mean, and variance corresponding
to the k-th Gaussian component, respectively. Once the model
is trained, the FV representation of a set of local descriptors
{1, 22, ...,zn} will be given by [13]:

. 1 N T; — Uk
uk—NMEQki(or), (D

o 1 N] Ty — Uk 27
|G I G

where gx; corresponds to the soft assignment of descriptor x; to
the k-th Gaussian.

The u and v parts capture the 1st and 2nd order differences,
respectively. With a d-dimensional local descriptor, the final
representation of size 2dK is obtained by concatenating u and
v, which will usually yield FV encoding of relatively high di-
mensionality. Using a K = 32 Gaussian components GMM
along with 90-dimensional local descriptors, for instance, will

yield FV with the final dimension given by 2 * 90 % 32 = 5760.
The principal component analysis (PCA) algorithm can be ap-
plied on the raw FV encoding in order to reduce its dimension.
The PCA projection matrix can be obtained on the training data.
Power normalization followed by L2-normalization are then ap-
plied [11, 12, 13, 14]. While power normalization helps to re-
duce the sparsity of the descriptors, L2-normalization aids in
improving prediction performance. We utilize a component-
wise power normalization with a = 0.5 as:

f(z) = sign(z)|z|". 3)

For UASD task, we train six GMMSs, one for each machine

type, and then extract fisher vectors from all samples of a ma-

chine type using the GMM of that machine type. No dimension

reduction is performed but the power normalization followed by
L2-normalization is applied.

4. Approaches adopted for UASD Task
4.1. VAE & Conditional VAE

Variational autoencoders (VAEs) have been shown to outper-
form conventional autoencoders in anomaly detection [16].
Here we used a 8 Variational AutoEncoder (3-VAE, [17]) with
a general architecture similar to the baseline autoencoder. The
encoder and decoder are composed of 4 fully connected lay-
ers with ReLU activation, batch normalisation and skip connec-
tion. But in contrast to the autoencoder, the decoder input is
not connected to the encoder output; its input is an embedding
sampled from a Gaussian distribution with diagonal covariance
N (110, 03). Each parameter pg, o is obtained by applying a
dense linear layer to the encoder output. The loss function also
differs from the baseline autoencoder. In addition to the recon-
struction loss, a divergence term is added:

B DiLIN (1o, 05) || N(0,T)])

where Dgr is the Kullback-Leibler divergence between the
embedding distribution and a zero-mean, unit-variance Gaus-
sian prior, and 3 is a weight that is used to strike a balance be-
tween reconstruction error and divergence from the prior. This
additional term acts as a regularizer in learning, to encourage
better generalization.

The encoder input and decoder output layers have the same
dimension as the original input. All hidden layers have dimen-
sion 256, except the embedding (bottleneck) layer which has
size 8. The total number of trainable parameters is 733,840.
The model is trained for 100 epochs, using an Adam optimizer
with default values. A separate model is trained for each ma-
chine type.

For Conditional Variational AutoEncoder (CVAE, [18]) we
use here a 3-VAE which takes two inputs: features and machine
label. An embedding layer is applied to the categorical label
and its output is concatenated with the features before being
fed to the encoder input layer. One version uses only machine
type labels and the other one uses a combination of machine
type and machine id. A larger, single model is trained with data
pooled from all machines, with hidden layers of dimension 384,
bottleneck of size 8, machine label embedding of size 128, for
a total of 1,545,100 trainable parameters, for 50 epochs.

4.2. Dense AE & LSTM AE

The baseline model (Dense AE) provided by the organizers, is
a simple autoencoder based on 9 block layers of a Dense layer,

followed by Batch Normalization, then a Relu Activation. With
a final output dense layer of the same original input dimension.
This AE is trained to minimize the reconstruction error of the
normal training data.

Using the same baseline features, we implemented an
LSTM-based AE to take into account the sequential nature of
the audio data. This LSTM AE is based on an encoder and a
decoder, both of which comprise 2 layers of LSTM cells, with
frames as the number of timesteps. The total number of train-
able parameters is 299384.

4.3. GMM-based UASD

On the top of fisher encoding-based global representations, we
use a Gaussian Mixture Model (GMM) classifier for attain-
ing anomaly score of an observed sound. Six GMMs are first
trained, one for each machine type, using the fisher vectors. For
a given fisher vector of a specific machine type we compute the
anomaly score (weighted log probabilities for each sample) us-
ing GMM of that machine type.

4.4. Copy Detection Approach for UASD

In copy detection algorithms [1], we match a new snippet of au-
dio (query audio) with reference audio files to see whether the
query audio is a copy of a reference audio. To do this, we create
fingerprints for the reference audio and search for the query fin-
gerprints in the reference audio. In doing so, we find a sequence
of fingerprints in the reference that match query frames time-
synchronously. The match likelihood between the query and the
reference increases with the total number of frame-synchronous
fingerprint matches between the query and the reference. The
maximum count of these frame synchronous matches corre-
spond to the best matching reference to this query, and the
matching count acts as the likelihood of the match. Good
matches in general correspond to over 10% of the query frames.
The best matching reference frame for each query frame is the
reference frame with the lowest distance (Euclidean distance,
absolute distance etc.).

When we applied the copy detection algorithms to the
anomalous sounds detection (ASD), the number of frame syn-
chronous matches were very small, around six or seven, for both
anomalous and normal sounds. The reason is that most of the
sounds are repeated, and there is no real sequence of distinct
sounds as it is for speech. So even the six or seven synchronous
matches are probably random matches.

So we varied the copy detection algorithm to create 20 ref-
erence templates for each machine (by machine we mean each
individual machine: four different fans, four different pumps,
etc.) . For each machine we created 20 templates, and the tem-
plates were created from only the training data for that machine.
We tried 2 different algorithms to create the templates.

In one algorithm, we use the features (MFCC’s or filter-
bank features) from first 20 training files to generate 20 tem-
plates. We take the remaining training files from the training
data for that machine and compute the best matching frames
to these first 20 training files for creating these templates. For
example, if there are N training files in the training set for the
machine and each training file has M frames, then first 20 are
used to create the reference templates. Files 21 through N are
used to generate match statistics for matches with these 20 train-
ing files. The features of each training and test file are mean and
variance normalized before use. If we assume there are F fea-
ture frames in each of the training files, then these statistics are
generated as follows:

for each training file i from tr(1) to tr(20) do;

for each training file j from tr(21) to tr(N) do;

for each frame k in tr(j) from k=1 to F do;

compute d(tr(i), tr(j)(k)) = min dist(tr(G)(k), tr(i)(L)),
L=1,...,F;

end do; end do;

compute mean d(i,k) of (d(tr(i),tr(j)(k), j=21,...,.N.) For
each frame k

Ll

A

7. mean d(i,k), k=1,...F becomes a reference template i

In other word, as shown above, training files 21 through N are
compared with the features of the first 20 training files to create
the 20 templates.

For testing, we take each file in the development set (test
file) and find the closest matching frames to the training files
in the same fashion as during training. For example, for each
frame of the test file, we find the distance to the closest matching
frame of training file 1. These closest matching scores are then
compared to the averaged scores for template one we computed
above. There are different ways of coming up with the match
between the development file and the 20 reference templates.
One way is to sum the differences between all the test scores and
the averaged scores of the corresponding frames of the template.
The higher the accumulated sum, the worse is the match. So this
score is the anomaly score associated with that test file. Another
way is to count the number of frames that have test scores higher
than the averaged scores in the reference template. The higher
this score, the better is the likelihood of an anomalous sample.
Another way would be to get the sequence of score differences,
compute the mean and variance of this sequence, and find the
number of frames that are above one or two standard deviation.
The higher this number, the higher the likelihood of anomalous
detection.

We tried the above three ways of computing scores for all
the machines in the development set. It turned out that asso-
ciating scores to anomalous behavior was tricky. For exam-
ple, when a valve is working correctly, it makes loud click-
ing sounds, while these clicking sounds are weak when the
valve is faulty. So higher scores should be associated with cor-
rectly working device. Same was true about many other ma-
chines. For example, some pumps make much more noise when
they are working than when they are faulty. So for each ma-
chine, allocation of higher scores to anomaly/normal behavior
was on a case by case basis. With proper correction, the re-
sults for some of these algorithms are shown in Table 1. In
algorithm 1 (Euclidean, above sigma) in this table, we use 40-
dimensional MFCC features, Euclidean distance for frame com-
parison, and for total anomaly score, we first compute the se-
quence of score differences between the test frames and the
reference templates as outlined above. We then find the mean
and standard deviation of this sequence. We then sum scores of
all the score differences between the test and reference frames
that are above mean+standard deviation. This sum becomes
the anomaly score. In algorithm 2 (Euclidean, fbank, posi-
tive only), we use 40-dim filter-bank features with Euclidean
distance for frame comparisons. In this algorithm, we find the
number of frames of test which have distances greater than the
corresponding average values for all the 20 reference templates.
The total count of these anomaly frames becomes the anomaly
score. Algorithm 3 (Euclidean, positive only) is same as al-
gorithm 2, but uses 40-dimensional MFCC features. In algo-
rithm 4 (250ms new), we use 250ms window to compute 40-
dimensional MFCC features with 125ms frame advance. The

total anomaly score is the difference between the total number
of test frame scores above the average values minus the total
number of test frame scores below the average values.

alg TC TCon fan pump slider valve
1 048 0.5 053 0.59 0.61 0.76
2 056 051 0.5 0.62 0.61 0.78
3 055 052 053 061 0.68 0.77

4 063 056 051 058 0.66 0.61

Table 1: Average AUC results for different machines with differ-
ent algorithms.

Another algorithm for generating the 20 templates is simi-
lar to the previous algorithm, but it also generates stats for each
frame. In this algorithm, for example, when we match training
example 21 with training example 1, we get the best matching
frame for training example 1 with each frame of training exam-
ple 21, and then generate stats for the frames of training exam-
ple 1 from all the frames from training example 21 thru training
example N that match the training example 1 frames. Here also,
the features of each training and test file are mean and variance
normalized before use. The pseudo algorithm goes as follows:

1. for each training file i from tr(1) to tr(20) do;
2. for each training file j from tr(21) to tr(N) do;
3. for each frame k in tr(j) from k=1 to F do;
4

. compute d(tr(i)(L1), tr(j)(k)) = min dist(trj)(k), tr(i)(L)),
L=1,....F;

bt

end do; end do;

6. compute mean and standard deviation of d(tr(i)(L1,*)
from all frames k of training examples j that match frame
L1 of training example i.

7. Each frame L of training examples i gets a mean and a
standard deviation that is stored as a template.

In first algorithm, we accumulate statistics for each frame
based on matches with frame numbers of training examples
21 thru N. In this algorithm, we accumulate statistics for each
frame based on matches with frame numbers of training exam-
ples 1 thru 20. So the template has the average and standard de-
viation of each frame of training example 1 for all such matches
with the frames of training examples 21 through N.

During the comparison, We get the closest matching frame
of training example 1 for each frame of the test audio from the
development set. The template mean for this matching refer-
ence frame is then subtracted and normalized by dividing with
standard deviation. The resulting scores are summed for all the
frames to give the total anomaly score. This is done for all 20
templates. Also different strategies like in the previous algo-
rithm can be applied for generating the anomaly scores. The re-
sults for a few different ways of generating anomaly scores are
shown in Table 2. The first algorithm (NN-sigma-norm) uses
40-dimensional MFCC features and sums all score differences
after normalization with standard deviation as described above.
The second algorithm (NN-sigma-norm-1) sums the score dif-
ferences without normalization with standard deviation. The
third algorithm (NN-sigma-norm-fbank) uses filter-bank fea-
tures with normalization as in the first algorithm.

alg TC TCon fan pump slider valve
1 061 057 052 061 0.72 0.73
2 059 056 054 0.60 0.72 0.80
3 056 051 0.53 0.5 0.59 0.69

Table 2: Average AUC results for different machines with al-
ternative way of computing reference templates and with three
different algorithms for generating anomaly scores.

If we just look at the best average scores for each machine,
then the second set of algorithms give better AUC scores than
the first set of algorithms. We also tried to combine the anomaly
scores for different algorithms. The combination is by first nor-
malizing the scores for each algorithm, and then combining
them either with equal weight or with weights based on AUC
values. In either case, we could never improve the AUC values
above the best value for each machine. So the best strategy so
far for each machine seems to be to pick the algorithm that gives
the best AUC or AUC+pAUC value.

5. Ensemble of systems

We tried many different systems with different feature parame-
ters. So the question was which systems to submit. We had a
limit of 4 systems to submit. So we prepared these 4 submis-
sions based on the development machine results. The following
four systems were submitted:

1. The best overall system based on overall average AUC
over all the machines. During training, the AUC was
better when trained with dev set alone (instead of dev +
eval set training). So this system was only trained on the
eval set training data for submission. This is denoted as
subl.

2. The best overall system per machine based on Average
AUC per machine. By machine we mean fan, slider,
pump, etc. So there could be six different systems in-
volved since there are six machines. Here also, each sys-
tem was trained on the eval set training data alone. We
denote this system as sub2.

3. The best overall system per machine based on average
AUC per machine. So the same systems are involved
as in the previous submission. However, this time, each
system is trained on combined dev and eval training sets.
We denote this one as sub3.

4. We combined results from top 3 systems for each ma-
chine. So for each machine, the top 3 systems could
be different. The combination was by first normaliz-
ing the score for each system (subtract average and di-
vide by standard deviation), and then adding the scores.
No weighting was applied since we observed that even
for the same machine type (like fan), the scores vary
a lot for each individual machine in that machine type.
When combining the scores for the dev set machines,
we achieved better AUC scores for fan, pump, ToyCar
and ToyConveyor, while the AUC scores for slider and
valve were slightly worse. This combination is denoted
as sub4.

The average AUC scores for the dev set for each machine
type for the four different submissions are shown in Table 3. In

this Table, the first row shows results for the baseline system. So
our progress can be estimated by comparing the corresponding
baseline averages for each machine to our submission averages
for the dev set.

slider valve

system TC TCon fan pump

Baseline 0.78 0.72 0.67 0.73 0.84 0.67

subl 0.80 059 072 0.78 0.91 0.96

sub2 081 075 072 0.78 0.94 0.96

sub3 081 075 072 0.78 0.94 0.96

sub4 083 075 072 0.78 0.94 0.95

Table 3: Average AUC results for the dev set for each machine
for each submission. Submissions sub2 and sub3 have the same
dev set scores as the submissions differ only in the training set
(eval set versus dev+eval set). The first row shows the baseline
results. TC and TCon are acronyms for ToyCar and ToyCon-
veyor, respectively.

It is observed from Table 3 that with all our submissions we
were able to achieve better performance than the Baseline on
machine types of the development test set with one exception
for sub1 which provided worse result on ToyConveyor machine.
Our best single system is based on modulation spectrum and is
denoted in this table as subl. As a pre-processing step this sys-
tem employed speech enhancement for removing the effects of
environmental noise. The submitted system sub4 outperformed
all the systems reported in Table 3. Systems sub2 and sub3
demonstrated the second best results.

6. Conclusions

In this work, we presented details of our systems developed
for the unsupervised anomalous sound detection task of the
DCASE 2020 challenge. Detection of anomalous sound in this
fashion may be helpful for machine condition monitoring. Vari-
ous handcrafted local representations from the short-time spec-
tral analysis of sounds and fisher vector encoding - a learned
global representations obtained from local representations of
sound were employed. In addition to a simple Autoencoder we
also employed variational autoencoder and conditional variants
of it to compute anomaly scores. Here, we proposed to use copy
detection approaches over the local representations of sound for
unsupervised anomaly detection. Fisher encoding-based system
with a standard GMM classifier provided excellent performance
on valve and slider machine types. Our best single system was
based on modulation spectrum - based on local acoustic fea-
tures.

7. Acknowledgements

The authors would like to thank Ministry of Economy and In-
novation (MEI) of the Government of Quebec for the continued
support.

8. References

[1] V. Gupta, G. Boulianne, and P. Cardinal, “CRIM’s content-based
audio copy detection system for TRECVID 2009.” Multimed
Tools Appl, vol. 60, pp. 371-387, 2012.

[2] Y. Koizumi, Y. Kawaguchi, K. Imoto, T. Nakamura, Y. Nikaido,

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

R. Tanabe, H. Purohit, K. Suefusa, T. Endo, M. Yasuda et al., “De-
scription and discussion on dcase2020 challenge task2: Unsuper-
vised anomalous sound detection for machine condition monitor-
ing,” arXiv preprint arXiv:2006.05822, 2020.

Y. Koizumi, S. Saito, H. Uematsu, N. Harada, and K. Imoto,
“Toyadmos: A dataset of miniature-machine operating sounds for
anomalous sound detection,” in 2019 IEEE Workshop on Appli-
cations of Signal Processing to Audio and Acoustics (WASPAA),
2019, pp. 313-317.

H. Purohit, R. Tanabe, K. Ichige, T. Endo, Y. Nikaido, K. Suefusa,
and Y. Kawaguchi, “Mimii dataset: Sound dataset for malfunc-
tioning industrial machine investigation and inspection,” arXiv
preprint arXiv:1909.09347,2019.

M. J. Alam, P. Kenny, V. Gupta, and T. Stafylakis, “Spoofing
detection on the asvspoof2015 challenge corpus employing deep
neural networks,” in Proc. Odyssey, 2016, pp. 270-276.

M. J. Alam, P. Kenny, G. Bhattacharya, and T. Stafylakis, “De-
velopment of crim system for the automatic speaker verification
spoofing and countermeasures challenge 2015,” in Sixteenth An-
nual Conference of the International Speech Communication As-
sociation, 2015.

J. Alam and P. Kenny, “Spoofing detection employing infinite im-
pulse response—constant q transform-based feature representa-
tions,” in 2017 25th European Signal Processing Conference (EU-
SIPCO). IEEE, 2017, pp. 101-105.

M. J. Alam, G. Bhattacharya, and P. Kenny, “Boosting the per-
formance of spoofing detection systems on replay attacks us-
ing g-logarithm domain feature normalization,” in Proc. Odyssey
2018 The Speaker and Language Recognition Workshop, 2018,
pp. 393-398.

M. Sahidullah, T. Kinnunen, and C. Hanil¢i, “A comparison of
features for synthetic speech detection,” in Sixteenth Annual Con-
ference of the International Speech Communication Association,
2015.

T. Falk, C. Zheng, and W. Chan, “A non-intrusive quality and in-
telligibility measure of reverberant and dereverberated speech,”
IEEE Transactions on Audio, Speech, and Language Processing,
vol. 18, no. 7, pp. 1766-1774, 2010.

T. Jaakkola and D. Haussler, “Exploiting generative models in dis-
criminative classifiers,” in Advances in neural information pro-
cessing systems, 1999, pp. 487-493.

F. Perronnin and C. Dance, “Fisher kernels on visual vocabularies
for image categorization,” in 2007 IEEE conference on computer
vision and pattern recognition. 1EEE, 2007, pp. 1-8.

F. Perronnin, Y. Liu, J. Sdnchez, and H. Poirier, “Large-scale im-
age retrieval with compressed fisher vectors,” in 2010 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recog-
nition. 1EEE, 2010, pp. 3384-3391.

H. Kaya, A. A. Karpov, and A. A. Salah, “Fisher vectors with
cascaded normalization for paralinguistic analysis,” in Sixteenth
Annual Conference of the International Speech Communication
Association, 2015.

J. Alam, “On the use of fisher vector encoding for voice
spoofing detection.” in I3th International Conference on
Ubiquitous Computing and Ambient Intelligence (UCAml),
https://doi.org/10.3390/proceedings2019031037, pp. Toledo,
Spain, December 2-5, 2019.

J. An and S. Cho, “Variational Autoencoder based Anomaly De-
tection using Reconstruction Probability,” Special Lecture on IE,
vol. 2, no. 1, pp. 1-18, 2015.

I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot,
M. Botvinick, S. Mohamed, and A. Lerchner, “3-VAE:
Learning Basic Visual Concepts with a Constrained Variational
Framework,” in Proc. ICLR, 2017, pp. 1-22. [Online]. Available:
https://openreview.net/forum?id=Sy2fzZU9¢gl

D. P. Kingma, D. J. Rezende, S. Mohamed, and M. Welling,
“Semi-Supervised Learning with Deep Generative Models,”
in Proc. NIPS, 2014, pp. 3581-3589. [Online]. Available:
http://arxiv.org/abs/1406.5298

