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ABSTRACT

Polyphonic sound event localization and detection is to not only de-
tect what sound events are happening but to localize corresponding
sound sources. This series of tasks was firstly introduced in DCASE
2019 Task 3. This year, the sound event localization and detection
task brings additional challenges in moving sources and up to two
overlapping sound events, which include cases of two same type
of events with two different direction-of-arrival (DoA) angles. In
this report, a novel event-independent network for polyphonic sound
event localization and detection is proposed. Unlike the two-stage
method that was proposed by us last year [1], this new network is
fully end-to-end. Inputs to the network are first-order Ambisonics
(FOA) time-domain signals, which are then fed into a 1-D convo-
lutional layer to extract logmel spectrograms and intensity vectors.
The network is then split into two parallel branches. The first branch
is for the sound event detection (SED), and the second branch is for
the DoA estimation. There are three types of predictions from the
network, which are SED predictions, event activity detection (EAD)
predictions that are used to combine the SED and DOA features for
the on-set and off-set estimation, and DoA predictions. All of these
predictions have the format of two tracks indicating that there are
at most two overlapping events. Within each track, there could be
at most one event happening. This architecture brings a problem of
track permutation. To address this problem, a frame-level permuta-
tion invariant training method is used. Experimental results show
that the proposed method can detect polyphonic sound events and
their corresponding DoAs. The performance of Task 3 dataset is
greatly increased compared with the baseline method.

Index Terms— Sound event localization and detection,
direction of arrival, intensity vector, permutation invariant training,
event-independent

1. INTRODUCTION

Sound event localization (SED) and detection become a more and
more popular research topic since DCASE 2019. It detects types
of sound events and localizes corresponding sound sources frame-
wisely. This year, DCASE 2020 Task 3 [2–4] brings additional
challenges in moving sources and polyphonic cases that includes the
same class of event but with different direction-of-arrivals (DoAs).

For DCASE 2019 Task3, we introduced a two-stage method for
polyphonic sound event localization and detection [1]. Although it
obtained a relatively high ranking, it was not designed as an actual

polyphonic localization method for the reason that it lacks the ability
to detect the case of the same type of event but with different DoAs.
Besides, it is not a graceful end-to-end system.
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Figure 1: Illustration of track permutation problem. Numbers mean
different group of labels.

In this report, we introduced a re-designed event-independent
end-to-end system for polyphonic sound event localization and de-
tection. It is designed for overlapping-event cases, especially for the
case of the same type of event with different DoAs. It is also conve-
nient to expand the system to the case of more than two overlapping
events. The source code is released on GitHub1. The proposed
system predicts overlapping events using track-wise outputs, that
is, it predicts event and corresponding DoAs per each track. For
DCASE 2020 Task3 with up to two overlapping events, the track
number is two. Similar ideas were adopted by Nguyen [5]. However,
to make the system more complete, it is reasonable to assume these
tracks are event-independent. Thinking of a polyphonic prediction
case illustrated in Fig. 1. The network has one prediction per each
tack, within which there could only be maximally one event and
corresponding DoA. There are also three groups of labels which are
all potentially two events overlapping cases. Presumably, for the
first group, the ”speech” label and the ”car” label are tied to track
1 and 2. For the second group, it is reasonable to still assign the
”speech” label to track 1, and the new ”dog bark” label to track 2.
Nevertheless, for the third group of labels, it is hard to decide which
tracks to assign ”dog bark” and ”car” labels to. In other words, track
permutation problems emerge if track-wise predictions are used.

For track-wise predictions, tracks are event-independent. Frame-
level permutation invariant training (denoted as tPIT), which was
first proposed for speaker-independent source separation [6–8], can
address this problem by examining all possible label permutations

1https://bit.ly/3fAGANB
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Figure 2: Network Architecture. Nframes is the number of frames. Nclasses if the number of classes of events. In SED branch, there is one
additional class of event that is silence.

in each frame during training. It then selects the lowest frame-level
loss among these label permutations for the backward propagation
to train the model. In this way, the optimum local assignment of
track-event pairs can be reached, thus leading to the excellent SED
and DoA prediction performance frame-wisely.

In order to utilize the combined feature information from both
SED and DoA estimation branches, besides the SED prediction
and DoA prediction, an additional event activity detection (EAD)
prediction is also adopted. The aim of this EAD prediction is to
constrain the detection of the existence of events (or DoAs) not only
from SED features but also from DoA features. That means SED
and DoA predictions do not solely dependent in one way, but both
information is used to detect the existence of events (or DoAs). With
the proposed system, experimental results show that the performance
is greatly increased compared with the baseline system.

The rest of the report is arranged as follows. In Section 2,
the proposed learning method is described in detail, including fea-
tures, network architecture, permutation invariant training, and hyper-
parameters. Development results are shown in Section 3. Finally,
conclusions are summarized in Section 4.

2. THE METHOD

2.1. Features

Task 3 provides two types of the input data format: First-Order of
Ambisonics (FOA) and tetrahedral microphone array. In this report,
a logmel spectrogram feature is used for SED, while an intensity
vector from FOA data in logmel space is used for DoA estimation.

FOA, which is also known as B-format, includes four chan-
nels of signals, w, x, y and z. These four channel signals indicates
omni-directional, x-directional, y-directional and z-directional com-
ponents, respectively. The instantaneous sound intensity vector can
be expressed as I = pv, where p is the sound pressure and can be
obtained with w, v = (vx,vy,vz)

T is the particle velocity vector
and can be estimated using x, y and z. Intensity vector carries the
information of the acoustical energy direction of a sound wave, its in-
verse direction can be interpreted as the DOA, hence the FOA based
intensity vector can be directly utilized for DOA estimation [1].

In order to concatenate the logmel and the intensity vector fea-
tures to input to the proposed neural network, the intensity vector is

also calculated in the STFT domain and the mel space as

I(f, t) =
1

ρ0c
<

W∗(f, t) ·

 X(f, t)
Y(f, t)
Z(f, t)

 , (1)

Inorm,mel(k, t) = −Hmel(k, f)
I(f, t)

‖I(f, t)‖ , (2)

where, ρ0 and c are the density and velocity of the sound, W,X,Y,Z
are the STFT of w, x, y, z, respectively, <{·} indicates the real part,
∗ denotes the conjugate, ‖ · ‖ is a vector’s `2 norm, k is the index of
the mel bins, Hmel is the mel-band filter banks. In this report, the
three components of the intensity vector are taken as three additional
input channels for the network.

2.2. Network architecture

The proposed event-independent network has two branches which
are the SED branch and the DoA branch. The network architec-
ture is shown in Fig. 2. FOA time-domain signals are used as the
input and are firstly fed into two branches. Each branch has a fea-
ture embedding layer. For both of the feature embedding layers.
A 1-D convolutional layer is used to extract logmel spectrograms
and intensity vectors features. Then they are normalized using a
batch-normalization layer. For SED feature embedding, 4 groups
of convolutional blocks are used to extract SED embedding. Each
convolutional block contains 2 2-D convolutional layers with a ker-
nel size of 3x3, a batch norm layer, and an average-pooling layer.
For DoA feature embedding, ResNet 18 is used. The two branches
are then used to generate three predictions, SED predictions, EAD
predictions, and DoA predictions. For SED and DoA predictions,
the SED and the DoA feature embeddings are fed into a bidirectional
GRU and a fully-connected layer, respectively, to generate two tracks
predictions. Each track has at most one event and one DoA. For SED,
the predictions have Nclasses + 1 types of events. Here, Nclasses is
the number of event classes. The additional class of event indicates
the silence class (no event is happening). The softmax activation
function is used after each track for SED. For DoA, the two predic-
tions tracks contain azimuth and elevation angles. Linear activation
is used (no activation). For EAD prediction, the SED feature em-
bedding and DoA feature embedding are concatenated to input to
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a bidirectional GRU and a fully-connected layer to generate event
activity predictions for two tracks. Each track prediction indicates
if the event is happening on that track. Sigmoid is used after each
track. The existence of EAD predictions is very important in two
folds. First, it combines the SED and DoA feature embeddings to
predict on-set and off-set information; second, it constrains the SED
and DoA feature embedding layers to unify track-sequence. During
training, the DoA predictions are masked by EAD labels to filter
those frames with actual events happening. But for inference, the
DoA predictions are masked by EAD predictions.

After track predictions are obtained, the frame-level permutation
invariant training (tPIT) is used to simultaneously assign labels to
different tracks and select whichever the lowest loss as the actual
loss to calculate the backpropagation. Assume there are P possible
permutations pairs of predictions and labels, Y indicates one of the
predictions of SED, EAD or DoA, and Ỹα(t) indicates the possible
labels, where α(t) ∈ P is one of the possible permutations at time t.
The tPIT loss can be written as Eq. 3.

LtPITt = min
α(t)∈P

∑
SED,EAD,DoA

∥∥∥Y − Ỹα(t)

∥∥∥ (3)

Therefore, the process of tPIT is to not only perform the classifi-
cation or regression training but also to pair the most possible targets
and predictions at each frame. In this case, the event-independent
track predictions can be excellently matched with the corresponding
targets, hence the track permutation problem can be solved.

2.3. Hyper-parameters

To generate the weights of the 1-D convolutional layer for logmel
and intensity feature extraction, the sample rate of the signal is set
to 24 kHz. A 1024-point Hanning window with a hop size of 480
points is utilized. The audio clips are segmented to have a fixed
length of 5 seconds with a 80% overlap for training. The learning
rate is set to 0.0005 for the first 60 epochs and is then adjusted to
0.0001 after each epoch that follows. The final results are calculated
after 80 epochs. A threshold of 0.5 is used to binarize the EAD
predictions.

3. DEVELOPMENT RESULTS

This year, polyphonic sound event detection and localization are
evaluated with modified metrics that consider the joint nature of
localization-and-detection [3]. There are two metrics for SED which
are F-score (F≤T◦) and Error Rate (ER≤T◦). But they are also
location-dependent, considering true positives predicted only under
a distance threshold T = 20◦. For localization part, there are other
two metrics who are also classification-dependent. These metrics
are location error LECD and localization recall metric LRCD.

Using the validation split provided for this task, Table 1 shows
the development set performance for the proposed method. As shown
in the table, the performance of the proposed method outperforms
the two baseline methods for both sound event detection and DOA
estimation by a large margin.

4. CONCLUSION

We proposed a new end-to-end event-independent network for poly-
phonic sound event localization and detection. The network treats
the polyphonic cases as multiple-track problems, with each track has
at most one event and the corresponding direction-of-arrival. In order

Table 1: Test results for the development set.
ER20◦ F20◦ LECD LRCD

baseline-Ambisonic 0.72 37.4 % 22.8◦ 60.7 %
baseline-Microphone array 0.78 31.4 % 27.3◦ 59.0 %
Event-Independent 0.47 61.5 % 16.7◦ 75.4 %

to solve the problem of track permutation, a frame-level permutation
invariant training strategy is employed. The network outputs three
predictions which are sound event detection, event activity detection,
and direction-of-arrival. The event activity detection encompasses
the feature embedding information from both SED and DoA, hence
it is able to predict on-set and off-set time of events more accurately.
Experimental results show that the proposed system outperforms the
baseline methods by a large margin.
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