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ABSTRACT 

In this technical report, we describe our acoustic scene 
classification algorithm submitted in DCASE 2020 Task 1a. We 
focus on network innovation, a novel acoustic scene classification 
model based on 2-order dense convolutional network is proposed, 
which aims at the problems of insufficient classification accuracy 
and adaptability of current models. Based on the dense 
convolutional neural network, combined with the N-order Markov 
model, the traditional dense connection is improved to the N-order 
correlation connection, and then the N-order dense convolutional 
network model is proposed. In terms of audio feature extraction, 
we use Log-Mel spectrograms and Gamma-Tone spectrograms to 
stitch together. In order to further improve system performance, 
virtual data generation technology is adopted. Finally, use the 
trained model for transfer learning. By using proposed systems, we 
achieved a classification accuracy of 69.16% on the officially 
provided evaluation dataset, which is 15.06% over than the 
baseline system. 

Index Terms— Acoustic scene classification, 2-order 
dense convolutional network, N-order Markov model, Log-
Mel spectrograms, Gamma-Tone spectrograms 

1. INTRODUCTION 

Audio carry a large amount of life scenes and physical events in 
the city [1], which plays an important role in our life. From the 
perspective of human cognition, auditory cognition is an important 
part of artificial intelligence. In the study of cognitive science, 
auditory cognition is often regarded as the second perception 
system second only to vision. Obviously, auditory cognition, as an 
important way to perceive the environment, its research value and 
development potential are self-evident. Acoustic scene 
classification(ASC) aims to classify sounds into one of predefined 
classes [2]. The audio scene classification competition and related 
conferences are also in full swing with the development of ASC. 
The DCASE Challenge was organized and launched by the 
University of London Queen Mary College Digital Music Center 
and Tampere University of Technology in 2013. It is currently the 
most authoritative competition in the field of acoustic events. 
Since 2016, the DCASE Challenge has been accompanied by a 
seminar which is held once a year, and many experts and scholars 

participate in it every year. 
A high-quality dataset is an important prerequisite for testing 

whether the sound scene classification system is excellent. The 
DCASE challenge releases new dataset every year. From the 
DCASE 2016 challenge to the DCASE 2017 challenge, the length 
of each audio sample has been reduced from 30s to 10s [3]. The 
dataset released by the DCASE 2018 Challenge records high-
quality binaural audio from 6 European cities as samples [4]. The 
dataset released by the DCASE 2019 Challenge ensures that each 
audio sample is recorded by the same device. With the release of 
the DCASE 2020 challenge, audio samples recorded by multiple 
devices and scenes are added to the data set for the first time, 
thereby further improving the quality of the data set. 

In this report, we introduce an acoustic scene classification 
model based on N-order dense convolutional neural network. It is 
based on the dense convolutional neural network and combined 
with the improvement of the N-order Markov model, which is a 
more powerful dense convolutional neural network model. As for 
audio feature extraction, dual feature stitching is used, and after 
feature stitching, virtual data generation technology is used to 
achieve the purpose of data enhancement. 

The remainder of this report is organized as follows. Section 
2 describes the data preprocessing scheme. Section 3 details the 
structure and principles of N-order dense convolutional neural 
network in detail. Section 4 introduces the experiment and its 
results. Section 5 sets out the final conclusion. 

2. DATA PREPROCESSION 

This section describes our method of converting audio samples 
into acoustic features, and the method of data enhancement by 
generating virtual samples after feature stitching is completed.  

2.1. Acoustic Feature 

The sampling rate of the audio samples is the original 22050Hz, 
the length of the Fourier change window is set to 1024-samples 
(23ms) and the frame-shift is set to 1026- samples, and then each 
audio sample is divided into 215 frames. 

2.1.1 Log-Mel Spectrogram 

Using the short-time Fourier transform to obtain the spectrogram 
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after the audio samples that have been framed, and then pass 
through the 128-bit Mel filter bank, and finally take the 
logarithmic processing to obtain (N, 215, 128) shape Log-Mel 
spectrogram features [5].  

 𝑚𝑒𝑙(𝑓) =
ଵ଴଴଴

௟௢௚ ଶ
𝑙𝑜𝑔 (1 +

௙

ଵ଴଴଴
) (1) 

2.1.2 Gamma-Tone Spectrogram 

The method of extracting the Gamma-Tone spectrogram is 
similar to the above method, except that the Mel filter bank in the 
above method is replaced with the Gamma-Tone filter banks based 
on the ERB scale. The Gamma-Tone filter bank is a cochlear 
standard filter. It is a filter bank that simulates the human ear 
auditory system. The classic model of the filter bank impulse 
response is given as:  

 𝑔௜(𝑡) = 𝐴𝑡ேିଵ 𝑒𝑥𝑝(−2𝜋𝐸𝑅𝐵(𝑓௜)𝑡) × 𝑐𝑜𝑠(2𝜋𝑓௜𝑡 + 𝜑௜) 𝑈(𝑡), 

 𝑡 ≥ 0,1 ≤ 𝑖 ≤ 𝑁 (2) 

where 𝐴 is the filter gain, 𝑁 is the filter order, 𝑓௜ is the center 
frequency, 𝜑௜  is the phase, after simplifying the model, 𝜑௜ =
0. 𝐸𝑅𝐵(𝑓௜) is equivalent rectangular bandwidth. It determines the 
attenuation rate of the impulse response, which is related to the 
filter bandwidth, and each filter bandwidth is related to the critical 
frequency band of the human ear hearing [6]. In auditory 
psychology: 

 𝐸𝑅𝐵(𝑓) = 24.7 × (4.37
௙

ଵ଴଴଴
+ 1) (3) 

to obtain the (N, 215,128) shape of the Gamma-Tone spectrogram 
features [7].  

Finally, the two acoustic features are stitched together to 
obtain a synthetic feature vector of shape dimension (N, 215, 256). 

2.2. Data Augmentation 

In recent years, the number of samples in the dataset released by 
the DACSE challenge has increased year by year, but in order to 
improve the generalization ability of the model, it is not enough to 
just use the given samples. Therefore, the use of data augmentation 
to generate additional virtual data has gradually become the 
mainstream. 
   The mixup method is a form of neighborhood risk 
minimization [8]. This is an unconventional data enhancement 
method. Its principle is to extract additional virtual samples from 
the neighborhood distribution of training samples to expand the 
support of the sample distribution. The training distribution is 
expanded by fusing linear interpolation of feature vectors. 

Mixup augmented data is obtained as follows: 

 𝑥෤ = 𝜆𝑥௜ + (1 − 𝜆)𝑥௝  (4) 

 𝑦෤ = 𝜆𝑦௜ + (1 − 𝜆)𝑦௝  (5) 

where (𝑥௜ ,  𝑦௜ ) and (𝑥௝  ,  𝑦௝ ) are two acoustic scenes randomly 
chosen from the training data and 𝜆 ∈ (0,1) [9].  𝜆  is acquired 
from the beta distribution and 𝛽 ∈ (0.1,0.9) 

3. NETWORK FRAMEWORK 

In this part, firstly we introduce a new N-order dense convolutional 
network model (N-DenseNet) that we propose, and then explain 
the principles of forward propagation and back propagation of this 
novel network model through a 2-order dense convolutional 
network (2-DenseNet). The 2-order sub-model of N-DenseNet 
network will be used as the network model in the experiment in 
the next section.  

3.1. N-Order dense convolutional network 

It is obviously that dense convolutional network model (DenseNet) 
[10] provides the necessary theoretical basis for the proposal of N-
DenseNet, therefore, the main principle of DenseNet would be 
concisely introduced here. The input of each layer in DenseNet 
comes from the output of all previous layers. Dense Block is a 
basic unit of DenseNet. In a 𝑙 -layer Dense Block structure, the 
input of each layer is defined as 𝑥଴, 𝑥ଵ, 𝑥ଶ,…, 𝑥௟, then: 

 𝑥௟ = 𝐻([𝑥଴, 𝑥ଵ, … , 𝑥௟ିଵ]) (6) 

where [𝑥଴, 𝑥ଵ, … , 𝑥௟ିଵ] refers to concatenation of the feature-map 
produced in layers 0, …,𝑙 − 1 . 𝐻(⋅)  represents the composite 
function of three consecutive operations: batch normalization 
(BN), followed by a rectified linear unit (RELU) and a 3×3 
convolution (Conv). 

Markov model is a statistical model widely used in speech 
recognition, natural language processing and other fields. The 
transition of its current state depends on the discrete time 
stochastic process of the first N states and has nothing to do with 
the previous historical state, which is called the N-order Markov 
model [11]. 

Combining characteristics of the DenseNet and N-order 
Markov model, N-DenseNet is designed as a novel network 
architecture to further improve the classification accuracy and 
generalization ability in ASC. N-Dense Block as a basic module of 
N-DenseNet, its input of 𝑙 layer is just referred to the output of 
last 𝑁 layers. In a 𝑙-layer N-Dense Block structure, the input of 
each layer is defined as 𝑥଴, 𝑥ଵ, 𝑥ଶ,…, 𝑥௟ିே  , …,𝑥௟ିଵ,𝑥௟, then: 

 𝑥௟ = 𝐻([𝑥௟ିே, 𝑥௟ିேାଵ, … , 𝑥௟ିଵ, 𝑥௟]) (7) 

In order to well complete the DCASE 2020 task 1a, 2-
DenseNet as a sub-model of N-DenseNet is designed and shows 
better classification accuracy and generalization ability. Therefore, 
the 2-DenseNet and its working principle will be interpreted at 
length in the followings. 

The state-dependent connection of 2-Dense block can be 
defined by the fact that the input of the l layer is just only related 
to the output of the previous 2 layers. In a 𝑙-layer 2-Dense Block 
structure, the input of each layer is defined as 𝑥଴, 𝑥ଵ, 𝑥ଶ,…,𝑥௟, the 
forward propagation of 𝑙-layer can be defined as: 

 X  ௟(𝑖, 𝑗) = [𝑿 ௟ିଵ ⊗ 𝒘](𝑖, 𝑗) + 𝒃 

 = ∑௞∑௠∑௡ൣ𝑿௞
௟ିଵ(𝑖 + 𝑚, 𝑗 + 𝑛)𝒘௞(𝑥, 𝑦)൧ + 𝒃 (8) 

where ∑  denotes the forward propagation of the convolutional 
layer, 𝑿௟ିଵ and 𝑿௟ represent the input and output of the feature-
map, ⊗  denotes the convolution operation, 𝒘  denotes the 
kernel function and 𝒃 denotes the offset value, 𝑋(𝑖, 𝑗) 
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Figure 1: Schematic diagram of the forward propagation and back propagation of the 2-DenseNet

represents the pixel on the feature map, 𝑘 is the number of feature 
map channels, 𝑚 and 𝑛 are the size of the convolution kernel. 

For a 2-order state-dependent connection, the current layer in 
a 2-DenseBlock model is the concatenation layer by targeted and 
regulated tailoring of concatenation, that is, the input of the current 
layer just comes from the output of the previous 2-layers, which 
can be defined by: 

 𝑥௟ = 𝐻([𝑥௟ିଶ, 𝑥௟ିଵ, 𝑥௟]) (9) 

3.2. Forward propagation and back propagation of 2-
Densenet 

In a 𝑙-layers Dense block structure, the number of state-dependent 
connection of DenseNet is 𝑙(𝑙 − 1)/2, while in the 2-DenseNet, 
the number of state-dependent connection is 2(𝑙 − 2). Actually, 
reducing the number of state-dependent connection leads to a 
faster convergence speed and a higher training efficiency of the 
network model. In this part, the principle of forward propagation 
and back propagation of 2-DenseNet will be introduced separately. 

3.2.1 Forward propagation of 2-Densenet 

The forward propagation schematic diagram of 2-DenseNet is 
shown in Figure 1. 

As the basic convolution unit, a convolution combination 
structure such as 1×1  convolution and 3×3  convolution is 
shown in Figure 1 𝑿 . The input of each layer is defined by: 
𝑿𝟏, 𝑿𝟐, … , 𝑿𝒍 , the feature-map output 𝑼𝒊  of each layer starting 
from third layer is defined by: 

 𝑈௜ = 𝑓(𝐵𝑁(𝑊ଷ×ଷ⨂𝑓(𝐵𝑁(𝑊ଵ×ଵ⨂[𝑋௟ିଶ, 𝑋௟ିଵ, 𝑋௟] + 𝐵))))
  (10) 

where [𝑋௟ିଶ, 𝑋௟ିଵ, 𝑋௟] represents the related connection mode of 
2-Dense block, and uses the feature mapping of two previous 
layers as inputs, 𝑊ଵ×ଵ and 𝑊ଷ×ଷ indicates that the convolution 
kernel size is 1×1 and 3×3, 𝐵𝑁(⋅) is the batch normalization, 
and 𝑓(⋅) is the activation function of RELU. 

It is obviously that the related connection mode of 2-Dense 
block ensures the convergence speed of training process. 

3.2.2 Back propagation of 2-Densenet 

Back propagation is based on weight update strategy, which 
adjusts parameters on the negative gradient direction of target. It 
means the weight of each layer is continuously updated during the 
Back propagation. The method of weight update of 2-DenseNet is 
shown in Table 1. 

In Table 1 and Figure 1, 𝐿  represents the loss function of 2-
DenseNet, 𝛿௟  represents the error of every layer, 𝑈௟  indicates 
the output of each layer, while 𝑊௟ is the matrix of the convolution 
layer and 𝑊௖௟  is the matrix of layer after 𝐻(⋅) operation, ∗ is 
the convolution operation to flip. 

Table 1 shows the error term of 2-order concatenation layer is 
propagated back to the two previous layers, which can be 
expressed by:  

 𝜕𝐿/𝜕𝑊௟ିଶ = ൫𝛿௟ିଵ ∗ 𝑊௟ିଵ + 𝛿௟ ∗ 𝑊௖௟ + 𝛿௟ାଵ ∗ 𝑊௖(௟ାଵ)൯⨂𝑋௟ିଶ

  (11) 

 

Table 1: Back Propagation parameters of 2-DenseNet 

Layer Back Propagation Layer Back Propagation 

Input 𝜕𝐿/𝜕𝑊ଵ = 𝛿ଵ ∗ 𝑊ଵ ⨂ 𝑋 𝐿ହ 𝛿ହ = 𝛿଺ ∗ 𝑊଺ ⨂ (𝜕𝑈଺/𝜕𝑈ହ) 
𝐿ଵ 𝛿ଵ = 𝛿ଶ ∗ 𝑊ଶ ⨂ (𝜕𝑈ଶ/𝜕𝑈ଵ) 𝐿଺ 𝛿଺ = 𝛿଻ ∗ 𝑊଻ + 𝛿଼ ∗ 𝑊௖ସ 
𝐿ଶ 𝛿ଶ = 𝛿ଷ ∗ 𝑊ଷ + 𝛿଺ ∗ 𝑊௖ଵ  𝐿଻ 𝛿଻ = 𝛿଼ ∗ 𝑊଼ ⨂ (𝜕𝑈଼/𝜕𝑈଻) 
𝐿ଷ 𝛿ଷ = 𝛿ସ ∗ 𝑊ସ ⨂ (𝜕𝑈ସ/𝜕𝑈ଷ) 𝐿଼ 𝛿଼ = 𝛿ଽ ∗ 𝑊ଽ ⨂ (𝜕𝑈ଽ/𝜕𝑈଼) 
𝐿ସ 𝛿ସ = 𝛿ହ ∗ 𝑊ହ + 𝛿଺ ∗ 𝑊௖ଶ + 𝛿଼ ∗ 𝑊௖ଷ Output 𝜕𝐿/𝜕𝑈ଽ 
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4. EXPERIMENTS AND RESULTS 

4.1. Datasets 

The dataset for this task is TAU Urban Acoustic Scenes 2020 
Mobile. The dataset contains recordings from 12 European cities 
in 10 different acoustic scenes using 4 different devices. 
Additionally, synthetic data for 11 mobile devices was created 
based on the original recordings. Of the 12 cities, two are present 
only in the evaluation set. 

4.2. Training strategy 

We use the officially provided fold 1 procedure to evaluate our 
systems’ performance. Then the systems are retrained on the whole 
development data for submission. The train set is split into the train 
and evaluation set. The classifiers were trained on the trainset in 
maximum 400 epochs. Based on 2-DenseNet model, which 
described in Table 2, for a given number of convolution layers (24), 
convolution kernel size, channel number (k). The growth rate for 
all the network is k=40, optimizer Adam, Batch size = 32, etc. 

Table 2: The architecture of 2-DenseNet 

Layer Description 
Convolution(1) 5×5 conv-32-BN-RELU 

Pooling 2×3 average pool 
2-Dense Block 

(1) 
ቂ
1×1 conv
3×3 conv

ቃ ×3 

Transition Layer 
(1) 

1×1 conv 
2×2 max pool 

2-Dense Block 
(2) 

ቂ
1×1 conv
3×3 conv

ቃ ×3 

Transition Layer 
(2) 

1×1 conv 
2×2 max pool 

2-Dense Block 
(3) 

ቂ
1×1 conv
3×3 conv

ቃ ×3 

Transition Layer 
(3) 

1×1 conv 
2×2 max pool 

Convolution(2) 1×1 conv-256 
Pooling Global Average pool 
Dense Dense (256, activation=’relu’) 
Dense Dense (10, activation=’softmax’) 

4.3. Result 

Results of experiments of various acoustics features on the fold 1 
evaluation set is described in Table 3.  

Analyzing the experimental results in Table 3, it can be found 
that the accuracy of the method of single acoustic feature 
extracting such as Gamma-Tone spectrograms feature extracting 
and Log-Mel spectrograms feature extracting is lower than the 
method of feature stitching process.  

The accuracy of the method of Gamma-Tone spectrograms 
feature and the accuracy of the method of Log-Mel spectrograms 
feature extracting show that Single audio feature extraction 
method has certain limitations, which is not conducive to the 
improvement of audio classification tasks. While the dual feature 

stitching technology makes up for this shortcoming, which 
combines the advantages of two spectrograms and gets a better 
classification accuracy. 

In ensemble system, Log-Mel spectrograms and Gamma-
Tone spectrograms feature and stitched feature could be relatively 
complemented under a combination strategy. Table 3 shows the 
result of our algorithms. 

In order to express the classification ability of our model, the 
confusion matrix of the 2-DenseNet is shown in Figure 2. 

Table 3: The results of experiments 

Method Classification 
accuracy (%) 

Baseline 54.10 
Gamma-Tone spectrograms (GT-spec) 60.54 

Log-Mel spectrograms (LM-spec) 61.32 
GT-spec ⨁ LM-spec 64.44 

Ensemble (proposed system) 69.16 

 

Figure 2: Confusion matrix of the ensemble system with 69.16% 

accuracy. 

5. CONCLUSIONS 

In this technical report, we proposed a novel network acoustic 
scene classification model based on 2-order dense convolutional 
network. Combined with audio features stitching technology, the 
best reliable result achieves 64.44% at the time when this technical 
report is submitted. After ensemble system, the final system 
accuracy rate can reach 69.16%, which is 15.06% over than the 
baseline system.  
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