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ABSTRACT

This report describes our contribution to Task 1A of the 2020 De-
tection and Classification of Acoustic Scenes and Events (DCASE)
challenge. We investigated the use of bi-directional Gated Recur-
rent Unit (GRU) - Recurrent Neural Networks (RNNs) in order to
capture the spectral and temporal information of the input signal.
The GRU-RNNs are used as an ensemble during training, having
equal weights for the time and the frequency sequences. Our ar-
chitecture is based on a Convolutional Recurrent Neural Network
(CRNN), where the short-time Fourier magnitude spectrogram is
used as an input to the network. By exploiting the mixup augmenta-
tion technique, randomly selecting the mixup coefficient α for every
sample, and down-sampling the original signal from 44.1 kHz to 4
kHz, we achieved an average class accuracy of 65.4%. Since most
of the information of the environmental sound signals was found
in the lower frequencies, a CRNN model ensemble was performed,
combining 4 and 8 kHz as the sampling frequencies. The latter sys-
tem’s accuracy was boosted to 67.3%, a 24.4% increase over the
development set baseline.

Index Terms— Acoustic scene classification, convolutional re-
current neural networks, STFT spectrograms

1. PROPOSED ACOUSTIC SCENE CLASSIFICATION
SYSTEMS

Task 1A of the DCASE 2020 challenge [1] is not only related to the
basic problem of acoustic scene classification, in which an audio
recording is required to be classified into an acoustic scene class,
but it focuses on the generalization property of systems across a
number of different devices. The main challenge of this task is con-
cerned with the different acoustic properties that a recording device
can have. Some of them are about the frequency response of the
microphones, especially when comparing a professional binaural
microphone and a mobile device. Additionally the dynamic range
compression, added to the simulated devices, can significantly af-
fect the spectrum of the recording and in consequence the classifi-
cation accuracy of the developed system.

Our proposed systems use a simple CRNN architecture, where
we take advantage of combining two bi-directional GRU-RNNs that
focus on the spectral and temporal characteristics of the input signal.
The selected sampling frequencies are 4 and 8 kHz for the single
CRNN models and an ensemble of the two single models, where a
sample-based average with weights is taken from each one.

1.1. Audio signal pre-processing

As a first step, the input signal was down-sampled to 4 and 8 kHz
respectively for the single CRNN models. The main reason for
down-sampling the original signal was that when examining the au-
dio recordings, by plotting their linear spectrograms, most of the
audio signal energies were found at the lower frequencies.

Furthermore, we split the 10 s recordings into 4 segments of
2.5 s, for the case of the 4 kHz sampling frequency, and into 8 seg-
ments of 1.25 s, for the case of the 8 kHz sampling frequency. This
allowed to keep the same shape for both the frequency and time
axis of the short-time Fourier transform (STFT) spectrogram and to
decrease the computational cost of the network. The length of the
Fast Fourier Transform (FFT) was 512, with a hop length of 128.
We selected the Hanning window for the FFT and the resulted spec-
trogram was a matrix, consisting of un-normalized FFT values, with
shape 257 × 79.

1.2. Data augmentation

For our proposed systems, two data augmentation techniques were
applied. The first one was the mixup augmentation [2]. Regarding
the mixup augmentation, random α values were selected for every
batch. This resulted in random mixes between the classes that were
equal to 1/2 of the selected batch size.

Additionally, random time-shifts were performed, given the 10
s recording. In our approach, random 2.5 s segments were used as
an input to the network.

1.3. Network description

The neural network architecture that was selected for this task was
a 2D CRNN with two bi-directional GRUs, for the time and fre-
quency sequences respectively, as shown in Figure 1. Five convolu-
tional layers were selected, each have a kernel size of 3 × 3 and the
number of filters started from 32 and ended at 512 on the fifth con-
volutional layer. Each convolutional layer was followed by a batch
normalization layer and a max-pooling layer with 2 × 2 kernel and
the same stride size. The rectified linear unit (ReLU) [3] activation
function was used by the convolutional layers.

After the final max-pooling operation, the frequency and time
sequences were fed to two different bi-directional GRU with 512
units each. This resulted in a naive ensemble during the training
network that could learn the spectral and temporal characteristics of
the input signal, similarly to the one proposed by Deng et al. [4].
The hyperbolic tangent activation function was used by the GRU-
RNN layers.
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Finally the two separate outputs of the bi-directional GRU were
each used as input to two fully connected layers with 1024 units.
The activation function used by the fully connected layers was the
linear activation function. Since the mixed up samples were equal
to 1/2 (=32) of the selected batch size (=64) for each iteration, a
combined log-loss for the two heads was calculated for our final
system.
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Figure 1: The proposed CRNN architecture.

For the proposed systems (single 2D CRNN with 4 kHz sam-
pling frequency, single 2D CRNN with 8 kHz sampling frequency,
ensemble of both), the Adam [5] optimizer with an initial learning
rate lr=0.001 which was reduced by a factor of 0.1, when there was
no class-wise macro-average accuracy improvement for 20 consec-
utive epochs. The networks resulted in 20,477,140 trainable param-
eters and were trained on a single GTX 1080 Ti.

2. EXPERIMENTAL RESULTS

The systems were evaluated using the proposed single fold split be-
tween the training and evaluation parts of the development dataset.
The class-wise and devise-wise accuracy results are presented in

Table 1 and Table 2, respectively, and they are compared against a
baseline [6] that uses the OpenL3 [7] embeddings as features and
two fully connected layers, as the network architecture.

Our best system, which was an ensemble of 2D CRNNs on 4
and 8 kHz sampling frequencies, achieved a 24.4% increase over
the baseline. We noticed that as we increased the sampling frequen-
cies, the class-wise accuracy on the development set was signifi-
cantly worse. The classes pedestrian street and public square and
the simulated device six (S6) were the hardest to be classified.

Table 1: Class-wise accuracy results on the development set.

Label

Accuracy (%)

Baseline CRNN
4 kHz

CRNN
8 kHz

CRNN
Ensemble
4&8 kHz

Airport 45.0 57.6 58.6 59.0
Bus 62.9 88.2 73.7 85.2
Metro 53.5 67.0 61.6 70.0
Metro station 53.0 56.2 49.2 56.6
Park 71.3 82.5 84.2 83.8
Public square 44.9 33.7 42.8 37.7
Shopping mall 48.3 61.2 59.3 65.3
Street, pedestrian 29.8 46.5 39.1 47.8
Street, traffic 79.9 84.2 76.4 83.8
Tram 52.2 77.0 82.3 85.1
Average 54.1 65.4 62.8 67.3

Table 2: Device-wise accuracy results on the development set.

Device

Accuracy (%)

Baseline CRNN
4 kHz

CRNN
8 kHz

CRNN
Ensemble
4&8 kHz

A 70.6 76.4 74.5 77.0
B 60.6 66.7 65.2 69.1
C 62.6 70.6 67.3 71.2
S1 55.0 63.0 65.5 67.0
S2 53.3 60.3 63.3 63.9
S3 51.7 70.3 67.9 70.6
S4 48.2 64.2 55.8 66.4
S5 45.2 62.0 61.0 65.9
S6 39.6 57.0 47.5 58.2

3. CONCLUSIONS

In this report, we introduce our experimental results for the Task 1A
of acoustic scene classification in the DCASE 2020 challenge. By
ensembling two simple 2D CRNN models on two different sam-
pling frequencies, our system can outperform the baseline system
[6] by 24.4%.
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