
Detection and Classification of Acoustic Scenes and Events 2020 Challenge

LIGHTWEIGHT CONVOLUTIONAL NEURAL NETWORKS ON BINAURAL WAVEFORMS
FOR LOW COMPLEXITY ACOUSTIC SCENE CLASSIFICATION

Technical Report

Nicolas Pajusco, Richard Huang, Nicolas Farrugia

IMT Atlantique, Lab-STICC, Department of Electronics, Brest - France
nicolas.farrugia@imt-atlantique.fr

ABSTRACT

This report describes our submission to DCASE 2020 task 1, sub-
task B, which is an acoustic scene classification task with the ob-
jective of minimizing parameter count. While the vast majority
of proposed approaches rely on fixed feature extraction based on
time-frequency representations such as spectrograms, we propose
to fully exploit the information in binaural waveforms directly. To
do so, we train one dimensional Convolutional Neural Networks
(1D-CNN) on raw, subsampled binaural audio waveforms, thus ex-
ploiting phase information within and across the two input channels.
In addition, our approach relies heavily on data augmentation in the
temporal domain. Finally, we apply iterative structured parameter
pruning to remove the least important convolutional kernels, and
perform weight quantization in floating point half precision. We
apply this approach to train two network architectures: a 1D-CNN
based on VGG-like blocks, as well as a ResNet architecture with 1D
convolutions. Our results show that we can train, prune and quan-
tify a small VGG model to make it 20 times smaller than the 500
KB limit (model A) with an accuracy at baseline level (87.6 %), as
well as a larger model achieving 91 % of accuracy while being 8
times smaller than the challenge limit. ResNets could be success-
fully trained, pruned and quantify in order to be below the 500 KB
limit, achieving up to 91.2 % accuracy.

Index Terms— raw audio, Convolutional neural networks, au-
ditory scene classification, residual networks, data augmentation,
pruning

1. INTRODUCTION

Modern approaches for Deep Learning in computer vision or natu-
ral language understanding have been very successful in automat-
ically learning flexible feature extractors, using convolutional neu-
ral networks [1], residual networks [2], or attention-based / trans-
former models [3]. Such feature extractors are trained using large
amounts of data, limiting the need of hand-crafted features or rep-
resentations. In contrast, most deep learning approaches for audio
applications still rely on expertly defined, fixed feature extractors
based on time-frequency representations, such as spectrograms or
mel-spectrograms [4].

In this work, we were interested in testing the hypothesis that
using a fixed feature extractor is detrimental for computational com-
plexity, for two reasons. First, considering a spectrogram (or equiv-
alent) as an image-like input may tend to overparametrize the down-
stream network, as the effort in training for classification becomes
a two-dimensional problem. Second, a spectrogram only consid-
ers the power in frequency bands, ignoring the phase. In particular,

when considering two channels as input, the phase difference be-
tween the channels could be informative. As a consequence, our
goal is to train networks using end-to-end learning, from feature
extraction to classification, using CNN.

Learning from raw waveform is costly, due to the size of input
vectors. While approaches such as recurrent networks [5] or dilated
convolutions [6] have previously been considered, such approaches
need a very large number of parameters. We tackle this problem
by proposing an approach that relies on the following ingredients.
First, after a careful examination of provided signals, we resampled
all data to 18kHz. Next, we use both input channels in a CNN with
one-dimensional convolution kernels, coupled with stride and max-
pooling to reduce the size of internal feature maps. Third, we use
various strategies for data augmentation, in order to challenge the
network the learn relevant audio features with degraded or masked
versions of the waveforms. This data augmentation strategy is heav-
ily inspired by recent progress in deep learning in computer vision.
Finally, we apply parameter pruning, fine tuning and quantization
to the best models obtained.

The rest of this report is organized as follows. We begin by de-
tailing our strategies for data augmentation during training in sec-
tion 2. Next, we describe the two network architectures in section 3.
In section 4, we detail how we achieve to compress our models us-
ing structured parameter pruning and quantization. We explain our
experimental and training setup in section 5, and finally we present
and discuss our results in section 6.

2. DATA AUGMENTATION

Our strategy relies heavily on data augmentation (DA), with the un-
derlying hypothesis that combining various forms of DA can yield
better flexibility with a smaller set of parameters, as well as better
generalization. We use four forms of DA: temporal masking, filter-
ing, noise addition, and CutMix [7]. The various hyperparameters
of DA were chosen in preliminary analysis on subsets of the devel-
opment set. All DA are applied to 99% of the training set randomly
at each epoch, and DA is not applied for the validation and test set.

2.1. Temporal masking

Random crop using a rectangular window is an extremely common
DA strategy for training 2D CNN in computer vision applications.
We adapted this strategy to the temporal domain, by considering a
temporal mask that is positioned randomly in the signal. We imple-
ment temporal masking by multiplying the signal by a rectangular
window. The position of this window is randomly chosen within
the total length of the signal, with a total of 1000 possible positions.

Detection and Classification of Acoustic Scenes and Events 2020 Challenge

The window length is randomly chosen according to a Gaussian
distribution, with an average of four seconds and a standard devia-
tion of one second. Importantly, the resulting signal after temporal
masking is still 10 seconds long, which enables us to train and vali-
date the network with the full signal length.

2.2. Filtering

We perform DA using filtering in order to augment the variety of
the frequency content in the training set, thus challenging the net-
work training to extract the most relevant frequency features when
degrading the frequency content of the dataset. As a consequence,
we apply eight finite impulse response filter (FIR): three low pass
filters, three high pass and two band pass filters. These filters are
applied after the temporal masking (if present) on the 10 second
long signal. The cut-off frequencies of the low pass and high pass
filter are respectively 300, 1000 and 2000 Hz. Two band pass filters
are used : one with a bandwidth of 1200 to 3400 Hz, and one with
a bandwidth of 340 to 3400 Hz.

2.3. Additive noise

The third DA strategy is to add white Gaussian noise into the signal.
The signal to noise ratio is randomly chosen between 6 and 32 dB,
by steps of 1 dB. Noise is added in the signal after temporal masking
and filtering.

2.4. CutMix

CutMix [7] has been previously introduced as a very efficient DA
strategy for training CNNs for computer vision task. The general
idea of CutMix is to produce a new sample by concatenating two
segments belonging to two different categories, and set the target
by weighting according to lengths of each segment. The operation
is defined in [7] as :

x̃ = M� xA + (1−M)� xB
ỹ = λyA + (1− λ)yB

(1)

where xA and xB are two examples from the original training set,
M ∈ {0, 1} denotes a binary mask, � is the element-wise mul-
tiplication, λ is sampled from a Beta distribution Beta(α, α) with
α = 1, x̃ is the input new signal and ỹ is the new target. Note that
λ directly corresponds to the proportion of ones in M, as λ controls
how much example xA is ”mixed” in x̃.

3. NETWORK ARCHITECTURE

In this section, we present the network architectures that we submit
to the challenge. These architectures are based on popular CNN,
namely VGG [1], and ResNet [2]. We adapt these architectures for
raw binaural waveforms.

3.1. VGG

The first architecture is a one dimensional small standard CNN
(models A and B in table 1 and figure 1) composed of successive
blocks, each including a sequence of a convolution, Batch norm,
Restricted Linear Unit activation (ReLu), and Max Pooling. These
blocks are similar to the ones found in networks such as VGG [1].
The particularities of this architecture are (1) the two input channels
to deal with binaural sound, (2) one-dimensional operators such as

1D convolutions, 1D max pooling and 1D average pool. We propose
two networks, detailed in figure 1.

3.2. ResNet

The second architecture we use is ResNet (models C and D in ta-
ble 1). ResNet [2] is a very efficient architecture that enables to
train very deep neural networks, which have established the state of
art result in many computer vision tasks. The proposed 1d-ResNet
is based on a basic block described in figure 2, including a short-
cut that uses a 1x1 convolution, and convolutions with 3x1 kernels.
The architecture that we present here is composed of a first convo-
lutional layer (2 input channels Conv1d, 32 output channels, kernel
of size 64, stride of 4) followed by three modules. Each module
is made of respectively 3, 4 and 3 basic blocks for model C, and
3,3,3 basic blocks for model D. Convolutions within each module
are composed of respectively 32, 64 and 128 feature maps. Note
that no max pooling is used in ResNet, and strides of 4 are used in
the first convolution of each group of basic block. Average pooling
is performed before the final fully connected layer.

4. MODEL COMPRESSION

4.1. Structured Pruning

Pruning of network parameters is a common technique used to de-
crease the number of non-zero parameters. We perform structured
pruning, i.e. the parameters of whole convolution kernels are set to
zero. The importance of convolution kernels is estimated using the
L1 norm of its parameters, and the least important kernels are set
to zero. Previous studies have shown that structured pruning can
lead to high compression rates while keeping good performance on
standard computer vision tasks [9, 10]. After the initial training of
the model (see section 5.2), we perform pruning using an iterative
approach based on fine-tuning (similar to [9]), as follows :

1. Ranking of convolution kernels’ importance using the L1
norm.

2. Pruning of the least important ones by setting the corre-
sponding parameters to zero (we used both 10 % and 20 %
in our experiments).

3. Fine tuning of the pruned model on the training set dataset,
with DA identical to initial training. We fix a relatively low
learning rate (1e-5) and train the model using early stopping
on validation set (see section 5.2).

4. Repeat from 1 until a stopping criterion is reached.

We use different stopping criterion for pruning : prune while the
total number of nonzero parameters is above the challenge allowed
maximum (model D), minimize parameter count while keeping an
accuracy above the DCASE baseline of 87.3% (model A and C), or
minimize parameter count while keeping an accuracy close to the
full model (model B).

4.2. Quantization

After having performed training, pruning and fine-tuning iterations,
our final step is the quantization of all model parameters. We quan-
tize all inputs and parameters to floating point half precision, which
uses 16 bits for each data. This level of precision enables to keep
very similar test accuracy when compared with the full precision
model, even slightly increasing the accuracy in some cases.

Detection and Classification of Acoustic Scenes and Events 2020 Challenge

Max Pool (4)

Linear (64, 3)

Conv 1d
(2, 16, 64)

Stride : 4

BatchNorm (16)

Max Pool (4)

ReLu

Conv 1d (16, 16, 4)

BatchNorm (16)

Max Pool (4)

ReLu

Conv 1d (16, 32, 4)

BatchNorm (32)

Max Pool (4)

ReLu

Conv 1d (32, 64, 4)

BatchNorm (64)

Max Pool (4)

ReLu

Linear (64, 3)

Conv 1d (64, 64, 4)

BatchNorm (64)

Max Pool (4)

ReLu

a) b)

Average Pooling

Average Pooling

Conv 1d
(2, 16, 64)

Stride : 4

BatchNorm (16)

Max Pool (4)

ReLu

Conv 1d (16, 16, 4)

BatchNorm (16)

Max Pool (4)

ReLu

Conv 1d (16, 32, 4)

BatchNorm (32)

Max Pool (4)

ReLu

Conv 1d (32, 64, 4)

BatchNorm (64)

ReLu

Figure 1: Two simple 1-dimensional CNN on raw waveform. Panel
a corresponds to Model A and Panel b corresponds to model B.
For Conv1d modules, the numbers correspond respectively to input
feature maps, output feature maps, and kernel size. For the Lin-
ear module, numbers correspond to number of inputs, number of
outputs.

Conv 1x1

Conv 3x1

Conv 3x1

ReLu

ReLu

Batch Norm

Batch Norm

Figure 2: ResNet Block (figure adapted from [8]).

5. EXPERIMENTS

5.1. Datasets

The dataset for this task is based on TAU Urban Acoustic Scenes
2020 3Class [11]. All samples were recorded from the same device
in different sites (shopping mall, metro, bus, ...). There are three
possible acoustic scene categories : transportation, indoor and out-
door. Each audio sample are 10 second long, binaural, sampled at
48 kHz in 24 bits precision.

An extensive inspection of frequency content and frequency co-
herence of the development set has indicated that most of the sig-
nal energy is below 9000 Hz. Therefore, we resample all audio to
18 kHz in 16 bits precision, using the Fourier method (”resample”
function in SciPy [12]). We generate a validation set using 20% of
the available training data, and use the remaining 80% as training
set.

5.2. Training protocol

All models are trained using an Adam optimizer with a starting
learning rate of 0.001 and a batch size of 64. We use a scheduler to
divide the learning rate by 2 when the loss on the validation set does
not improve during five epochs. The model with the best accuracy
on the validation set is kept and tested on the test set. DA is used
on the training data only. Model C and D are trained using only
CutMix, while Model A and B are trained using Temporal masking,
filtering and additive noise. For all models, the training protocol is
perfomed in the following sequence:

• Training until early stopping as indicated by validation set per-
formance,

• Iterative structured pruning on parameters and fine tuning, as
described in section 4,

• Quantization to floating point half precision, and final evalua-
tion on the test set.

Detection and Classification of Acoustic Scenes and Events 2020 Challenge

name
Model Accuracy Loss params

Total
params

Non-zeros
(KB)
Size

Model A 87.6 0.360 13632 12160 23.8
Model B 90.9 0.288 30080 29888 58.4
Model C 87.6 0.379 398400 130730 255.3
Model D 91.2 0.269 373696 238896 466.6

Table 1: Performance and model complexity of the submitted mod-
els. Parameters are encoded in 16 bit floating point half precision.
Note that according to subtask B rules, batch norm layers are not
included in the calculation of model parameters.

6. RESULTS AND DISCUSSION

Table 1 presents the results obtained by the four models in the test
data of the development dataset, as well as the parameter count.
As specified in the task rules, batch norm layers are not included
in parameter count. As our approach does not use any prede-
fined feature extraction (e.g. spectrogram), we included the whole
model in the calculation of model parameters, including the first
convolutional layer. Layer-wise parameter count, including prun-
ing rates, are detailed on our github repository, as well as model
definitions in pytorch (https://github.com/brain-bzh/
dcase-2020-task1-subtaskB).

Our results show the feasibility of using raw binaural wave-
forms to train a model 20 times smaller than the 500 KB limit
(model A), as well as a model achieving 90.9 % of accuracy, while
being 8 times smaller than the challenge limit (model B). We also
provide results for larger ResNet models approaching the 500 KB
(model C and D). Note that model D does not perform signifi-
cantly better than model B in terms of macro-average accuracy, but
has a lower loss, which potentially indicates a better generalization
power.

7. REFERENCES

[1] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 770–
778.

[3] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all
you need,” in Advances in neural information processing sys-
tems, 2017, pp. 5998–6008.

[4] S. Hershey, S. Chaudhuri, D. P. Ellis, J. F. Gemmeke,
A. Jansen, R. C. Moore, M. Plakal, D. Platt, R. A. Saurous,
B. Seybold, et al., “Cnn architectures for large-scale au-
dio classification,” in 2017 ieee international conference on
acoustics, speech and signal processing (icassp). IEEE,
2017, pp. 131–135.

[5] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo,
A. Courville, and Y. Bengio, “Samplernn: An unconditional
end-to-end neural audio generation model,” arXiv preprint
arXiv:1612.07837, 2016.

[6] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu,

“Wavenet: A generative model for raw audio,” arXiv preprint
arXiv:1609.03499, 2016.

[7] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cut-
mix: Regularization strategy to train strong classifiers with lo-
calizable features,” in Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 6023–6032.

[8] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, Dive into
Deep Learning, 2020, https://d2l.ai.

[9] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P.
Graf, “Pruning filters for efficient convnets,” arXiv preprint
arXiv:1608.08710, 2016.

[10] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning
method for deep neural network compression,” in Proceed-
ings of the IEEE international conference on computer vision,
2017, pp. 5058–5066.

[11] A. Mesaros, T. Heittola, and T. Virtanen, “A multi-device
dataset for urban acoustic scene classification,” in Proceedings
of the Detection and Classification of Acoustic Scenes and
Events 2018 Workshop (DCASE2018), November 2018, pp.
9–13. [Online]. Available: https://arxiv.org/abs/1807.09840

[12] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haber-
land, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson,
W. Weckesser, J. Bright, et al., “Scipy 1.0: fundamental al-
gorithms for scientific computing in python,” Nature methods,
vol. 17, no. 3, pp. 261–272, 2020.

