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ABSTRACT

This technical report is for the Task 1B Acoustic scene
classification of the IEEE AASP Challenge on Detection and
Classification of Acoustic Scenes and Events (DCASE).
Targeting low complexity solutions for the classification problem
in term of model size, a kind of lightweight Convolutional Neural
Network (CNN) with efficient convolutions is designed. The
network is constructed by a kind of improved bottleneck block
based on the inverted residual linear bottleneck block. In the
improved bottleneck block, the operations of Detpthwise Channel
Ascent (DCA) and Group Channel Descent (GCD) are used to
replace pointwise convolution to realize efficient channel
transformation. The designed network is denoted by CNN-BDG
in this report. CNN-BDG realizes a better performance which is
4.46% higher than the baseline model in the validation set.
Besides, the parameters are reduced to about 30% compared to
the baseline model.

Index Terms— Acoustic scene classification,
Lightweight convolutional neural network, efficient
convolution

1. INTRODUCTION

Acoustic Scene Classification (ASC) is aiming at helping people
to automatically make sense of the environment through the
analysis of sound. ASC task is involved in many problems in
parallel. For example, in setting up a dataset, audio segmentation,
personal archiving and labeling need to be done by a lot of
manual effort. In the audio pre-processing, the audio needs to be
denoised and the feature used to classification needs to be
extracted manually. Recently, ASC is a regular task in the
Detection and Classification of Acoustic Scenes and Events
(DCASE) challenge series. DCASE provides a large dataset for
participant to study the ASC algorithm instead of the collection
of sound data [1].

Deep learning methods have been successful applied to ASC
task in recent years. Among them, the Convolutional Neural
Network (CNN) is one of the most popular because of the
excellent performance. There are two types of CNN according to
the dimension of convolution. One is 1-dimensional (1D) CNN.

For example, [2], [3] used 1D CNN to achieve end-to-end
environmental sound classification. The other is 2-dimensional
CNN. In DCASE2019 and DCASE2020, the baseline system
used Mel spectrogram as input fed into 2D CNN. Furthermore,
some networks proposed for machine vision are also used in ASC
tasks, such as VGG [4] and ResNet [5]. With the increasing size
of CNN model, the performance of CNN becomes better and
better recently. However, most applications of ASC are deployed
in mobile devices, such as mobile phone, hearing-aid and so on.
The efficiency of CNN model has become the maximum
limitation in the actual application of ASC.

To address the problem of over-complicated CNN models,
many methods of model compression and acceleration have been
proposed based on the pre-trained network model optimization.
For example, model pruning [6] deletes some unimportant
channels or connections in the network model; parameter
quantization [7] expresses the parameters of the model in a
format with fewer bits; weights sharing [8] represents multiple
weight parameters into one to reduce the number of parameters.
However, the methods of optimizing the pre-trained network
model do not fundamentally improve the network structure. The
optimized performance depends on the original network structure.
Different from optimizing the pre-trained network model,
reducing the redundancy of the network structure by optimizing
the network structure in the design stage which reduces
parameters and calculations more directly and effectively with
the same accuracy level.

In general, a complete CNN consists of convolution, pooling,
nonlinear activation and batch regularization, etc. As a critical
part of CNN, convolution extracts feature representations from
input through a hierarchy architecture. But the huge calculations
and parameters consumed by convolution is the main reason for
the over-complicated network model. Therefore, the model
complexity will be reduced by lightening the convolution
operations. There are some successful efficient convolution
operations, such as depthwise separable convolution [9] and
group convolution [10]. The drawback of depthwise separable
convolution is that it will cost huge calculations when the
channel dimension changes a lot. While group convolution divide
channel dimension into groups, which obstruct the information
transmission between channels. The channel dimension is as
important as the spatial dimension when it represents feature
information. Besides, the number of channels can be scaled more
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flexibly, so it is easier to control the feature richness and network
complexity in channel dimension. Generally, channel
transformation is realized by pointwise convolution accompanied
by huge calculations and parameters. Therefore, a more efficient
local channel transformation method including Depthwise
Channel Ascent (DCA) and Group Channel Descent (GCD) is
used to replace pointwise convolution. In addition, the novel
channel transformation method is applied with the inverted
residual linear bottleneck block to design an efficient network in
this report.

2. RELATEDWORK

2.1. Pointwise convolution

Pointwise convolution firstly proposed by [11] as a universal
function approximator for feature extraction on the local patches.
Pointwise convolution can increase nonlinear characteristic while
maintaining the resolution of input features. Furthermore, it is
easy to transform channel with transmitting the information
across channels. Sequentially, pointwise convolution is widely
used in networks, such as Inceptions[12], [13], MobileNets [9],
[14] and so on. However, there is a drawback when pointwise
convolution is used to transform channel when designing an
efficient network. Pointwise convolution will cost huge
calculations and parameters which results it is not completely
suitable to an efficient network. For example, when the input and
output channel numbers are 64 and 128, the width and height of
the feature map are 32, pointwise convolution needs more than
8M FLoating point Operations (FLOPs) and 8k parameters.

2.2. Inverted residual liner bottleneck block

Figure 1: The structure of inverted residual linear and bottleneck
block.

Inverted residual linear bottleneck block is proposed by [14] in
MobileNetV2, which inherits the method of depthwise separable
convolution to process spatial information and channel
information separately. The structure of inverted residual linear
bottleneck block is shown in Fig. 1. CPW1 and CPW2 are the output
channel number of feature maps after pointwise convolution. In
the inverted residual linear bottleneck block, the pointwise
convolution is used for channel expansion and channel reduction

to extract rich features and reduce network complexity
respectively.

3. METHODOLOGY

3.1. Depthwise channel ascent

Channel transformation includes channel expansion and channel
reduction. In channel expansion, pointwise convolution only
considers the spatial features. While Depthwise Channel Ascent
(DCA) used to replace pointwise convolution divide the channel
expansion into two parts, which not only extracts spatial features
but also channel features. The operation of DCA is shown in Fig.
2. In DCA, the pointwise convolution in DCA expands the
channel from Cin to E1Cin where E1 is the first expansion
coefficient. Then the multiple independent filters in the same
channel extract spatial features from the same feature map to
further expand the channel. When utilizing spatial features to
increase the channel dimension, the implementation of depthwise
convolution is referenced and the number of the filter in one
channel is changed from 1 to E2 which is the second expansion
coefficient. For convenience, it is also denoted as depthwise
convolution.

Figure 2: The operation of DCA with expansion coefficients
{E1=2, E2=2}. Ⓟ represents the pointwise convolution. Ⓓ
represents the depthwise convolution with the kernel size of 1x1.

3.2. Group channel descent

Pointwise convolution performs global linear transformation
between channel in channel reduction. For efficient channel
reduction, Group Channel Descent (GCD) firstly reduce the
channel feature redundancy in local channel by the operation of
channel compression, then a small-scale pointwise convolution is
added after channel compression to transmit the information
between channel. In the operation of channel compression, the
feature maps are firstly divided into some groups, then the pixels
at the same spatial position are summed channel-by-channel. The
operation of GCD is shown in Fig. 3. The channel dimension is
reduced from Cin to Cin/C1, then to Cin/(C1C2). C1 and C2 are
the compression coefficients of channel compression and
pointwise convolution in GCD.
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Figure 3: The operation of GCD when compression
coefficients {C1=2, C2=1}.

3.3. Improved bottleneck block

The inverted residual linear bottleneck block is an efficient
convolutional block which uses depthwise convolution to extract
spatial features and pointwise convolutions to extract channel
feature. However, channel transformation realized by the
pointwise convolution is accompanied by huge calculations and
parameters. Therefore, the pointwise convolutions in the inverted
residual linear bottleneck are replaced with DCA and GCD to
design a more efficient network. The structure of the improved
bottleneck block with identity mapping is shown in Fig. 4. The
coefficient of channel transformation is set to 6, which is
consistent with [14]. When the input channel number is not equal
to output channel number or the stride is not 1, there will be a
DCA operation in the bypass. Note that both the original inverted
residual linear bottleneck block and DCA have depthwise
convolution, so only one depthwise convolution is reserved in the
improved bottleneck block. The kernel size of depthwise
convolution is set to 3x3.

Figure 4: The structure of the improved bottleneck block
with identity mapping.

3.4. Network architecture

The CNN constructed by improved bottleneck blocks with DCA
and GCD (CNN-BDG) can be divided into four parts, the
standard convolution block with channel number of 16, the
improved bottleneck blocks with input channel number of 16, the
improved bottleneck blocks with input channel number of 32,
and the fully connected layer. The improved bottleneck block is
repeated 2n times totally. The network architecture with n of 3 is
shown in Table1. Besides, in the fully connected layer, dropout
operation with drop-rate of 0.3 is used. The operations of batch

normalization and Relu6 are used after standard convolution and
depthwise convolution.

Table 1: The architecture of CNN-BDG with n of 3.
Operation type Input size

Standard Conv 3x3x16 128x512x1
Improved bottleneck block1_1 64x256x16
Improved bottleneck block1_2 32x128x16
Improved bottleneck block1_3 16x64x16
Improved bottleneck block2_1 16x64x16
Improved bottleneck block2_2 8x32x32
Improved bottleneck block2_3 4x16x32

Global average pooling 4x16x32
Fully connection 1x1x32

3.5. Feature extraction

In the data preprocessing stage, the raw waves with binaural
channels are first downmixed to mono. In the extraction process
of the Mel spectrum, a Hamming window with a length of 1876
points (corresponding to 40ms) is used, the folding rate is 50%,
and the number of Mel filter bank is set to 128 (corresponding to
128 Mel bands). The data format input to CNN is 128x512
single-channel Mel spectrum. The feature fed into the network is
normalized by z-score.

3.6. Data augmentation

The raw waves in the same class are randomly mixed to generate
new sound samples, which is consistent with [15]. After mixed,
every raw wave generates a new raw wave. The number of train
sample in the development dataset is increased from 9185 to
18370.

4. EXPERIMENTS AND RESULTS

4.1. Setup

All networks are trained 200 epochs by minimizing the cross-
entropy loss with Adam optimizer. The initial learning rate is set
to 0.001 and every 50 epochs decays to the original 0.2. The
batch size is set to 16 in training. Model performance after each
epoch is evaluated on the validation set, and best performing
model is selected according to the validation set.

4.2. Results

In CNN-BDG, the number of the improved bottleneck block is
selected as 6 and 10, which means n equals to 3 and 5
respectively. The results of baseline and CNN-BDGs are shown
in Table2. It can be found that the parameters of CNN-BDGs is
significantly fewer than the baseline model. CNN-BDG (n=3)
requires about 0.3 times as many parameters as the baseline
model, while the accuracy is 4.46% higher than the baseline
model. The confusion matrix of CNN-BDG (n=3) is shown in
Fig. 5. It is worth noted that the accuracies of CNN-BDG (n=5),
CNN-BDG (n=7) and CNN-BDG (n=9) are lower than CNN-
BDG (n=3) while the parameters of them are more than CNN-
BDG (n=3). It may be because that more trainable parameters
results in overfitting instead of performance improvement.



Detection and Classification of Acoustic Scenes and Events 2020 Challenge

Table 2: The results of networks.
Model Parameters Size (KB) Accuracy (%)
Baseline 115,219 450.1 87.3
CNN-BDG (n=3) 35,059 136.9 91.76
CNN-BDG (n=5) 60403 235.9 90.59
CNN-BDG (n=7) 85747 334.9 90.63
CNN-BDG (n=9) 111091 433.9 90.20

5. CONCLUSION

For low complexity solution for the ASC task, a kind of
lightweight CNN is designed with efficient convolutions. The
inverted residual linear bottleneck block is selected as the basic
convolution block in the designed CNN-BDG. Besides, the
pointwise convolutions are replaced with the operations of DCA
and GCD to transform channel efficiently. CNN-BDGs realize
better performance and requires fewer parameters compared to
the baseline model.

Figure 5: The confusion matrix of CNN-BDG with n of 3.
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