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ABSTRACT

This paper presents an autoencoder-based unsupervised anomalous
sound detection (ASD) method for the DCASE 2020 Challenge
Task 2. Inspired by the great successes of the self-attention ar-
chitecture in various fields such as speech recognition, we propose
Transformer- and Conformer-based autoencoder for ASD, enabling
us to perform sequence-by-sequence processing. As opposed to the
standard autoencoder, they can extract sequence-level information
from whole audio inputs. Furthermore, we propose two simple
methods for exploiting machine ID information: machine ID em-
bedding and machine ID regression. The two methods enable the
proposed models to avoid the confusion of anomalous and normal
sounds among the different machine IDs. The experimental evalu-
ation demonstrates that the proposed autoencoders outperform the
conventional frame-level autoencoder, and the explicit use of ma-
chine ID information significantly improves the ASD performance.
We achieved an averaged area under the curve (AUC) of 91.33%
and averaged partial AUC (p = 0.1) of 83.34% on the develop-
ment set.

Index Terms— Anomaly detection, self-attention, Trans-
former, Conformer, autoencoder

1. INTRODUCTION

In this paper, we describe a novel autoencoder-based unsupervised
ASD approach for the DCASE 2020 Challenge Task 2 [1]. Inspired
by the great successes of the self-attention architecture in various
fields [2—4], we propose self-attention based autoencoder architec-
tures for unsupervised ASD. Furthermore, we propose two simple
but effective methods with individual ID information to address the
issue of individual differences. The contributions of this paper are
summarized as follows:

e We propose a novel autoencoder architecture based on Trans-
former [2] and Conformer (convolution-augmented Trans-
former) [5]. The proposed models enable us to perform
sequence-level processing to utilize the information of whole
the input audio.

e We introduce two methods with the machine ID information to
solve the individual difference problem: machine ID embed-
ding and machine ID regression. These methods allow avoid-
ing the confusion of anomalous and normal sounds among the
different machine IDs.

*Equal contribution.
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Figure 1: Overview of the proposed method.

e Experimental evaluation with the DCASE 2020 Challenge
Task 2 dataset shows that the proposed autoencoders outper-
form the conventional autoencoders and that the explicit use of
the machine ID significantly improves the performance. We
achieve an averaged area under the curve (AUC) of 90.47%
and an averaged partial AUC (p = 0.1) of 81.53% with a sin-
gle model, and an averaged AUC of 91.33% and an averaged
partial AUC of 83.34% with the ensemble.

2. PROPOSED METHOD

Figure 1 shows the overview of the proposed method. The proce-
dure of the proposed method is described in detail in the following
sections.

2.1. Audio preprocessing

First, short-term Fourier transform (STFT) of the audio waveform
is computed using Hann window. The frame length and the shift
length are 1,024 and 512, respectively. The STFT spectrogram is
then converted to a log Mel-spectrogram with the 128 dimensional
Mel basis. Finally, the log mel-spectrogram is scaled to have zero
mean and unit variance using the statistics over the training data.
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Figure 2: Architecture of the feed-forward autoencoder.
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Figure 3: Architecture of the Transformer-based autoencoder.

2.2. Neural-network modeling

We use a simple autoencoder-based approach for unsupervised
ASD. The autoencoder approach relies on the assumption that an
autoencoder would not accurately reconstruct anomalous data than
normal data, which is used to train the autoencoder [6]. This ap-
proach does not require a complicated training procedure such as
a generative adversarial network (GAN)-based approach [7], but it
can achieve comparable detection performance [8,9].

Let us assume that the input of an autoencoder at frame ¢ is @
and the corresponding output is &;. The reconstruction error e; can
be computed as follows:

et = abs(it — $t)7 (])

where abs(-) denotes element-wise absolute operator. If @; is in
anomalous data, the norm of e; should be large. Thus, anomaly de-
tection can be performed by a simple thresholding. The architecture
of the autoencoder can be designed freely.

In this study, we propose three types of autoencoder architec-
tures: a standard feed-forward autoencoder, a Transformer-based
autoencoder, and a Conformer-based autoencoder.
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Figure 4: Architecture of the Conformer block.

2.2.1. Feed-forward autoencoder

Figure 2 shows the architecture of the standard feed-forward au-
toencoder. Both the encoder and decoder consist of a linear layer
and N autoencoder blocks. Each of the autoencoder blocks consists
of a 1D batch normalization layer, a rectified linear unit (ReLU) ac-
tivation, a dropout layer, and a linear layer. The linear layer in the
final block of the encoder has a small number of units to make a
bottleneck structure. To capture the context information in the time
direction, we splice five frames of the input acoustic features.

2.2.2. Transformer-based autoencoder

Transformer is a neural network with self-attention layers, achiev-
ing the great performance in various fields [2-4]. Figure 3 shows
the architecture of the Transformer-based autoencoder. The encoder
consists of a linear layer, a positional encoding layer, N Trans-
former blocks, and a linear layer with ReL U activation. The decoder
is almost the same as the encoder except for the positional encod-
ing layer and the final nonlinear activation. The structure of the
Transformer block follows the original Transformer encoder archi-
tecture [2]. The final linear layer in the encoder has a small number
of units as the same as the feed-forward autoencoder to make the
bottleneck structure.

2.2.3. Conformer-based autoencoder

Conformer is convolution-augmented Transformer, which achieves
state-of-the-art performance in the field of automatic speech recog-
nition (ASR) [5]. The encoder and decoder architectures of the
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Conformer-based autoencoder are the same as the Transformer au-
toencoder as shown in Figure 3 without the positional encoding.
The Transformer block is replaced with the Conformer block which
is illustrated in Figure 4. The Conformer block basically consists of
feed-forward modules, a multi-head attention layer, and a convolu-
tion module. The feed-forward module consists of a layer normal-
ization layer, a linear layer with Swish activation [10] and dropout,
and a linear layer with dropout. The first linear layer expands the
dimension four times, and the second one projects back to the orig-
inal input dimension. After both the linear layers, we multiply 0.5
to the outputs by following the method described in the original
Conformer paper [5]. The convolution module consists of a layer
normalization layer, a 1 X 1 1D convolution layer with a gated lin-
ear unit (GLU) activation [11], and a 1D depth-wise convolution
layer. The depth-wise convolution layer is followed by a 1D batch
normalization layer, a Swish activation, and a 1 X 1 1D convolution
layer with dropout. We do not use the relative sinusoidal positional
encoding [12] in the multi-head attention layer since the length of
the inputs is fixed in the task.

2.3. ID embedding & regression

There is a possibility where normal sound of machine A could be
anomalous sound of machine B. To accurately detect an anomalous
sound of the target machine, we need to consider the individuality
of machine, i.e., machine ID. We propose simple but effective two
methods to exploiting the information: an ID embedding and an ID
regression.

The ID embedding conditions the decoder with the ID embed-
ding vector. We convert the machine ID to the embedding through
an embedding layer, and the embedding is then concatenated or
added to the latent variables extracted by the encoder. This makes
it possible to inform the decoder of the machine ID information ex-
plicitly.

In the case of the ID regression, we simply concatenate the ma-
chine ID to the input features, and the autoencoder then reconstructs
not only the input acoustic features but also the machine ID. The
autoencoder tends to confuse the machine ID when the audio clip
includes an anomalous sound even if we provide the correct ma-
chine ID as the inputs. Therefore, we can detect whether the audio
clip includes an anomalous sound from the estimated machine ID.

2.4. GMM-based scoring

Although the frame-level reconstruction error sequence ei.7 can
be directly used as an anomaly score with a simple averaging, we
modify e1.7 based on the distribution of the reconstruction error to
improve detection accuracy. Specifically, the frame-level anomaly
score, a, is represented as the negative likelihood of e; for K-
mixture Gaussians:

K
at :_ZwkN(et‘Nkyzk): 2)

k=1

where wg, pr, and X are the weight, the mean vector, and the
covariance matrix of the k*® mixture component, respectively. The
parameters are trained using the reconstruction errors calculating
from a validation set, which is not used for the training of the au-
toencoder.
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2.5. Score pruning and pooling

The frame-level anomaly scores ai.r may contain some outliers,
which could cause a negative impact on the averaging of the
anomaly scores. To alleviate the impact, we remove the lowest
and/or highest anomaly scores in ai.7. The anomaly scores are
sorted in ascending order:

SOrt(al;T) — [ a(C)T a(M)T a('H)T ]’ (3)

where sort(-) is a sorting function. The number of elements of a®
and @™ are |Tec; | and | Tca ], respectively, where ¢; and co are
in the range of [0,1]. Both a'*) and @™ are discarded and only
a™ is used for averaging. Note that c; and ¢z are tuned so as to
achieve the best detection accuracy on the development set.

As an averaging operator, the softmax weighted average is used
[13]. The aggregated anomaly score a is given by

i (M

.1 exp (aa; ))
=7 Z al? { o ) } , )

i=1 i'=1 SXP (aai,

where T’ = T'— | T'¢; | — | T'c2 | is the number of elements of a‘*
and « is a tunable scalar parameter. When o« = 0, (4) reduces to
an unweighted average, and when av — o0, (4) approximates max
operator.

2.6. Ensemble

Combining the decisions from multiple models is often better in
terms of overall performance as compared to using a single model.
Let us define a4 as an anomaly score a predicted by a model g.
The anomaly score G, is assumed to be normalized to [0, 1] for
each machine and each model. We combine the anomaly scores
of different models on the basis of the performance of the models.
As the performance measure, py, we use the average of AUC and
partial AUC on the development data. The combined anomaly score
a is then calculated as

e
a_ézag{ZGexp(ﬂpg)}y (5)

'—1 exp (Bpgr)

where G is the number of ensemble models and /3 is a tunable scalar
parameter. The final anomaly score @ is used for evaluation.

3. EXPERIMENTAL EVALUATION

3.1. Experimental conditions

We conducted an experimental evaluation using the DCASE 2020
Challenge Task 2 dataset [14, 15]. The dataset consisted of the nor-
mal/anomalous operating sounds of six types of toy/real machines:
Toy-car, Toy-conveyor, Fan, Slider, Pump, Valve. Each recording
was a single-channel, approximately 10-sec length audio sampled at
16 kHz. The number of training data was from 5,174 to 7,000 sam-
ples, and that of development data was from 879 to 3,509 samples,
which depending on the machine type. The training data included
only normal sounds, but the development data included both normal
and anomalous sounds to check the anomaly detection performance.
To verify the performance, we compared the following models:
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Table 1: Evaluation results: AUC [%] and partial AUC [%] for each machine.
Toy-car Toy-conveyor Fan Pump Slider Valve Average

AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC
Baseline 7877 67.58 7253 6043 6583 5245 7289 5999 8476 66.53 6628 5254 7351 59.92
Autoencoder 7934 6393 7584 6232 6891 5355 7745 6322 9570 8596 94.66 8628 8198 69.21
+ID embedding  83.83  66.24 74.63 61.83 7379 59.43 79.38 71.07 96.01 8698 98.15 9197 8430 72.92
+ID regression 8290 69.24 7399 6138 72.63 6435 79.86 72.05 95.64 8524 96.74 8852 83.63 73.46
Transformer 73770 5754 6992 5881 79.56 68.61 8699 7445 90.60 70.84 8429 6526 80.84 65.92
+ 1D embedding  80.01 64.04 73.89 61.40 7734 6568 8127 7490 94.14 8328 9546 8392 83.69 72.20
+ID regression ~ 84.55 73.78 74.66 6225 8512 7345 8870 80.34 9434 83.06 9771 90.11 8751 77.16
Conformer 7937 6195 77.18 63.50 8437 6927 87.07 7559 9575 87.04 97.62 8884 86.89 74.36
+ID embedding  80.84 62.79 78.01 63.07 8454 7243 8847 78.60 9580 86.19 99.03 9524 87.78 76.39
+ID regression  92.62 83.37 7791 63.50 86.59 7631 88.83 7843 97.16 89.27 99.68 98.33 9047 81.53
Ensemble (Diff) 93.17 84.69 7842 6356 8729 7793 9029 82.08 97.22 90.08 99.69 98.42 91.02 82.79
Ensemble (Best) 93.50 8544 79.06 64.75 8795 7930 90.29 82.08 97.37 8941 99.82 99.05 91.33 83.34

Baseline: The official baseline [1]. It was trained on the normal
training data by minimizing the reconstruction error in the
sense of mean squared error. The encoder consisted of four
hidden layers with 128 hidden units and one hidden layer
with eight hidden units. The decoder structure was symmet-
ric of the encoder one. The batch normalization and ReLU
activation units were used.

Autoencoder (ours): The proposed frame-level autoencoder. The
number of linear layer units, latent variables, and layers were
from 128 to 256, from 8 to 32, and from 4 to 8, respec-
tively, which depending on the machine type. The model
was trained for 100 epochs using Adam optimizer [16] with
the learning rate 0.01 and the batch size 512.

Transformer (ours): The proposed Transformer-based sequence-
level autoencoder. The attention dimension was 128 and the
number of attention heads was four. The number of blocks
and that of latent variables were from 4 to 8 and from 8§ to
64, respectively, which depending on the machine type. The
model was trained for 500 epochs using Noam optimizer [2]
with 8,000 warmup steps, the learning rate 1.0, and the batch
size 128.

Conformer (ours): The proposed Conformer-based sequence-
level autoencoder. The kernel size, the attention dimension,
and the number of attention heads were 31, 144, and four, re-
spectively. The number of blocks and that of latent variables
were from 4 to 8 and from 4 to 64, respectively, which de-
pending on the machine type. The model was trained for 500
epochs using the same optimizer setting used in the Trans-
former autoencoder.

In addition to the above models, we also trained two variants of the
above-proposed models using the proposed machine ID embedding
and machine ID regression. We used 90% of training data for the
autoencoder training, and the remaining 10% for the GMM train-
ing. The hyperparameters of each model and the post-processing
parameters, {a, 3, c1, c2 }, were optimized for each machine type.
The evaluation metric was an area under the curve (AUC) and a par-
tial AUC (p = 0.1), which were averaged over different machine
IDs.

3.2. Experimental results

The experimental results are shown in Table 1. From the compari-
son among the different architecture models, the Transformer-based
autoencoder outperformed the feed-forward autoencoder in the ma-
chine type Fan and Pump. Furthermore, the Conformer-based au-
toencoder outperformed the Transformer-based autoencoder and
achieved the best performance in all of the machine types.

From the results using the machine ID, both the ID embedding
and the ID regression improved the AUC performance for all of the
proposed autoencoders. Notably, the ID regression is more effective
in the case of sequence-level autoencoders. The Conformer-based
autoencoder with the ID regression achieved the best performance
in all of the machine types, resulting in an average AUC of 90.47%
and an averaged partial AUC of 81.53%. One of the reasons is
that the estimated ID in the sequence-level autoencoders tends to
be consistent in the output sequence, and therefore the cumulative
errors became higher compared to the frame-level autoencoder.

Finally, we performed the model ensemble. We used two strate-
gies for the model ensemble; the ensemble of different architecture
models (Diff) and the ensemble of 10-best models (Best). The re-
sult shows that both ensemble models further improved the perfor-
mance and outperformed the baseline system significantly. The best
ensemble model achieved an average AUC of 91.33% and averaged
partial AUC of 83.34%.

4. CONCLUSION

In this paper, we presented an autoencoder-based unsupervised
ASD method for DCASE 2020 Challenge Task 2. Experimental
evaluation showed that the proposed Conformer-based autoencoder
was effective and that using machine ID information was critical
for this task. The proposed method significantly outperformed the
baseline method, achieving an averaged AUC of 90.47% and an av-
eraged partial AUC of 81.53% with a single model, and an averaged
AUC of 91.33% and an averaged partial AUC of 83.34% with the
ensemble. In future work, we will consider the extension of the ID
regression to the classification-based approach.
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