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ABSTRACT 

This report describes our submissions with an autoencoder (AE) 

to solve the DCASE 2020 challenge task 2 (unsupervised detec-

tion of anomalous sounds for machine condition monitoring). 

Previous research results show that AE is a very effective solu-

tion to abnormal sound detection (ASD). This design continues 

previous research, using AE to implement unsupervised ASD. 

To decrease the false positive rate (FPR), the AE is trained to 

minimize the reconstruction error of normal sound. In addition, 

the design uses variational autoencoder (VAE) to generate nor-

mal sound samples. The generated sound samples are used to 

enhance AE's ability to reconstruct normal sound samples. 

Index Terms— DCASE 2020, abnormal sound detec-

tion, deep learning, and autoencoder. 

1. INTRODUCTION 

Voice is one of the most important carriers of information, and it 

is the most straightforward way of communication. The amount 

of information transmitted by sound far exceeds that of text and 

images. At present, in all research directions of sound signals, 

the most popular should be the research of sound recognition 

technology. In particular, ASD has been used for a variety of 

purposes, including audio surveillance, animal husbandry, prod-

uct inspection and predictive maintenance. For the last applica-

tion, because abnormal sounds usually indicate that the mechan-

ical equipment is malfunctioning. Discovering abnormalities 

quickly will reduce the number of defective products and pre-

vent the spread of damage. 

ASD tasks can be roughly divided into supervised ASD and 

unsupervised ASD. The difference lies in the definition of ab-

normal sound [9]. Supervised ASD detects "determined" abnor-

mal sounds, such as gunshots or screams, which is a rare sound 

event detection (SED). Once anomalies have been defined, even 

if anomalies are rarer than normal sounds, we can collect a data 

set of target abnormal sounds. In contrast, we cannot intentional-

ly damage expensive machines in a factory to obtain abnormal 

sound samples [10]-[12]. Meanwhile, the environment of factory 

machine operation is relatively complex. It is difficult to obtain a 

complete set of fault samples and apply supervised learning in 

fault recognition. Therefore, this type of task is reasonably con-

sidered as an unsupervised classification problem. 

In this report, according to the requirements of DCASE 

2020 challenge task 2, we present the design of an unsupervised 

ASD for industrial equipment to detect unknown abnormal 

sounds. A typical method of unsupervised ASD is to use outlier 

detection technology. The deviation between the normal model 

and the observed sound is calculated. Deviations are often re-

ferred to as "abnormal scores." The normal model represents the 

concept of normal behavior trained from normal sound training 

data. When the abnormal score is higher than a predetermined 

threshold, the observed sound is recognized as an abnormal 

sound. 

2. DATASET 

2.1. DCASE 2020 Task 2 Dataset 

The dataset of DCASE 2020 challenge task 2 consists of 3 sub-

sets. They are the development dataset, additional training da-

taset and evaluation dataset. In total, six types of machines are 

provided for investigation. They are the toy car, toy conveyor, 

valve, pump, fan and slide rail. Each recording is a single-

channel audio with the length of roughly 10 seconds, which is a 

mixture of the target machine operating sound and environmen-

tal noise. In the data set, each machine type contains several 

different device sounds. We number each device, and the num-

ber is called ID. It is worth noting that the device IDs used in the 

development dataset and the evaluation dataset are different. 

2.2. IDMT-ISA-ELECTRIC-ENGINE 

The IDMT-ISA-ELECTRIC-ENGINE data set is composed of 

sound files of three similar units of the electric engine (2ACT 

motor brushless DC 42BLF01, 4000 RPM, 24VDC), used to 

simulate different acoustic conditions. The dataset contains three 

different working states: "good", "heavy load" and "broken". All 

sounds in the data set are mono audio with a sampling rate of 

44.1kHz. 
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3. ARCHITECTURE 

3.1. Network Architecture 

In the actual factory environment, normal sound is very easy to 

obtain. When the AE model detects that the abnormal score of 

the sound to be detected is lower than the threshold, we can 

consider it as a normal sound model, so as to further train the 

parameters of the AE model [13]-[16]. 

In DCASE 2020 challenge task 2, given the normal operat-

ing sounds of different devices in six scenes, in view of the 

above, we first extract the sound features of the training data set, 

which are used to reconstruct the voice information. Then, the 

feature values are classified by Gaussian mixture model (GMM). 

The GMM learns the distribution law among the feature values 

and generate eigenvalues according to the learnt distribution law. 

If the eigenvalue conforms to the distribution error of the GMM, 

the generated feature is regarded as the eigenvalue of normal 

sound. By doing so, artificial normal sound samples are generat-

ed. 

The AE was originally proposed by Marchi et al. [4]-[7]. In 

this report, two VAE models were trained and a two-level gener-

ating network was designed. The original dataset is used to train 

the first VAE model. The trained model generates a new dataset 

with the same size as the original dataset. The generated dataset 

is merged with the original dataset and used to train the second 

VAE model [17]-[18]. Similarly, another dataset is generated 

and used together with the original dataset to train the AE model. 

 

encoder 

Input 309*640 

Dense(128, activation='relu') 

Dense(128, activation='relu') 

Dense(128, activation='relu') 

Dense(128, activation='relu') 

Dense(16, name='z_mean') 

Dense(16, name='z_log_var') 

Lambda(sampling, output_shape=(16,), name='z') 

decoder 

Input(shape=(16,), name='z_sampling')) 

Dense(128, activation='relu') 

Dense(128, activation='relu') 

Dense(128, activation='relu') 

Dense(128, activation='relu') 

Dense(640) 

Figure 2: The structure of the VAE model. Among them, 

the "z" layer of encoder is both the output of the encoder 

module and the input of the decoder module, which is the 

intermediate feature connecting the decoder and the en-

coder. 

3.2. Features 

The samples in the dataset of DCASE 2020 challenge task 2 are 

monaural. They have been recorded with a sampling rate of 

16kHz. By using a 1024-point hamming window (samples with 

512 hops), each sample or each channel of the preprocessed 

sample can generate a spectrogram. The log mel spectrogram is 

realized by applying the log mel filter bank to the spectrogram. 

There are 128 log mel filters in the filter bank, which cover the 

frequency range from 0 to 22.05 kHz. By subtracting the mean 

and dividing by the standard deviation, the log-mel spectrum is 

normalized. 

Therefore, the output of MFCC is (313,128) feature 

"Mfcc_1", and every 5 frames before and after the obtained 

feature are correlated to obtain a new output (309,640) feature 

"Mfcc_2". The feature correlation here is essentially the same as 

the number of hops in MFCC. The specific association details 

are shown in Figure 1. 

 

Figure 1: Feature Association Diagram 

3.3. Variational Autoencoder 

The first network we design for DCASE 2020 challenge task 2 is 

based on VAE. While training VAE, we will also train the de-

coder and encoder modules. The trained VAE model will be 

used to generate new original data. The structure of the VAE 

model is shown in Figure 2. 

The encoder network converts the input sample x into two 

parameters in the hidden space, denoted as "z_mean" and 

"z_log_sigma". Then, we randomly sample the data point "z" 

from the hidden normal distribution. This hidden distribution is 

assumed to be the distribution that produces the input data. The 

calculation formula for "z" is: 

 z = z_mean + exp(z_log_sigma)*epsilon. (1) 

In the formula, "epsilon" is a tensor that follows a normal 

distribution. Finally, the decoder network is used to map the 

hidden space to the explicit space, that is, to convert "z" back to 

the original input data space. 

 

encoder 

Input 309*640 

Dense(128, activation='relu') 

Dense(128, activation='relu') 

Dense(128, activation='relu') 

Dense(128, activation='relu') 

Dense(16) 

decoder 

Dense(16) 

Dense(128, activation='relu') 

Dense(128, activation='relu') 

Dense(128, activation='relu') 

Dense(128, activation='relu') 

Dense(640) 

Figure 3: The structure of the AE model. Among them, 

the "Dense (16)" of the decoder and encoder represents 

train data 
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the same layer. The figure is only to show the structure of 

the decoder and the encoder separately, so they are re-

peated. 

3.4. Gaussian Mixture Model 

The second network model in this report is GMM, which ana-

lyzes the distribution of features obtained after the training data 

passes through the encoder. The GMM is mainly used to gener-

ate new data. We use a two-level generation networks, so two 

GMMs are shared in the design. 

3.5. Autoencoder 

The last network is the AE network, which is mainly used to 

calculate the abnormal score value of the input data. The design 

of this section imitates the structure of the VAE model. The AE 

model is divided into two parts, decoder and encoder, and is 

trained for two rounds. The structure of the AE model is shown 

in Figure 3. The first round uses the original data and the data 

generated by the first-level generation network to train the AE 

model. We use the original data and the encoder of the AE to 

train the second-level generated network model. The second 

round uses a mixture of original data and second-level generated 

network model generated data to further train the AE. Lastly, the 

final AE prediction model is obtained. 

3.6. Network Ensemble 

The use of a two-level generation network model allows the 

model to accurately recognize the normal sound. However, there 

is an uncertainty in the recognition of abnormal sounds. The 

training of the model by generating data through VAE reduces 

the generalization ability of the model to a certain extent. How-

ever, we can divide the data set by specific IDs for different 

scenarios, in order for the targeted training to be conducted.  

We calculate the reconstruction error of the input signal as 

the abnormal score of the input signal. The calculation process 

of abnormal score is shown in Figure 4. When the score is high-

er than the set threshold, the input signal is regarded as an ab-

normal signal. 

The operation of the specific system is shown in Figure 5. 

 

Figure 4: Calculation Process of Abnormal Score.  

 

Figure 5: System Structure. It is worth noting that AE 

trained a total of two rounds. The input data of the first 

round is a mixture of original data and data generated by 

GMM1. The purpose is to train AE to get GMM2. The 

second round of training uses a mixture of raw data and 

data generated by GMM2. Finally, the trained parameters 

of the AE model are obtained. 

4. RESULT 

4.1. Results 

The optimization function used for model training is "Adam" 

and the loss function is "logcosh". All parameter adjustments use 

default parameters. 

In Table 1, we used another method to compare the results 

with this method. In the comparison method, we made a small 

improvement for the baseline. We conduct model training for 

each specific device. Instead of training all equipment under the 

same machine type. In this way, we can get a specific model for 

a specific device and enhance the generalization ability of the 

model. The results show that the method we used and the im-

proved baseline (AE) results are better than the baseline results. 

Table 1: Comparison of results of different methods. 

Machine Baseline AE VAE_AE 

ToyCar 78.77 % 82.91% 80.12% 

ToyConveyor 72.53 % 71.60% 73.06% 

fan 65.83 % 71.44% 69.58% 

pump 72.89 % 75.99 % 73.15% 

slider 84.76 % 83.80 % 85.19% 

valve 66.28 % 69.98 % 67.95% 

Normal 

sound data 

VAE 

GMM1 

 

AE 

GMM2 

Final model 

Merge 

Merge 

Sound data 
2

2


encoder decoder 

abnormal score 



Detection and Classification of Acoustic Scenes and Events 2020  Challenge   

4.2. Submissions 

For final submission, the training data changed to the whole 

devel-opment dataset, and other configurations still to follow the 

local experiment., they are submitted as: 

1. Jiang_UESTC_task2_1: This submissions is the result of 

using an AE model for each ID for each machine type. (AE) 

2. Jiang_UESTC_task2_2: This submission is the result of 

using a combination of VAE and AE. And the GMM algorithm 

is used to generate new data. The amount of newly generated 

data is equal to the amount of original data. (VAE_AE) 
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