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ABSTRACT

Prototypical part network (ProtoPNet) is a novel method proposed
for the task of image classification, offering the ability to interpret
the network’s reasoning process during classification. The subject
of this work is the examination of ProtoPNet as an unsupervised
anomaly detection method, through its application at the Detection
and Classification of Acoustic Scenes and Events (DCASE) 2020
task 2 challenge. It is also showed that ProtoPNet shares com-
mon grounds with Deep One-Class Support Vector Data Descriptor
(DOCSVDD).

Index Terms— Unsupervised Anomaly Detection, ProtoPNet,
DOCSVDD

1. INTRODUCTION

While most condition monitoring approaches focus on vibration
signals [1], the use of audio signals for fault detection is appeal-
ing as they encapsulate a substantial amount of machinery faults
[2]. On the other hand, the machinery’s surrounding noise under
realistic industrial conditions may lead to low signal to noise ratio
[3], thus impairing our ability to detect anomalous operations.

Qualitatively, the term anomaly describes a sample that strays
considerably from the majority of the data, arousing the suspicion
that it was generated by another mechanism [4]. Given an input
space X , the purpose of anomaly detection methods is the formula-
tion of a function A : X → R such that:

• A(x) is high when x represents an anomalous sample.
• A(x) is low when x represents a normal sample.

The mapping A(x) is called anomaly score [5]. Finally, a sample
x is classified as anomalous if A(x) > φ, where φ is a predeter-
mined threshold. Overlooking the way A(x) is measured, anomaly
detection techniques come under the following categories [6]:

• Supervised anomaly detection: The training dataset consists
of both normal and anomalous samples. That is equivalent to
binary classification.

• Semi-supervised anomaly detection: The training dataset con-
sists of only normal samples. The problem is also known as
one-class classification.

• Unsupervised anomaly detection: The available samples are
not labeled.

Since most unsupervised methods operate under the implicit as-
sumption that the majority of the available samples are normal [7],
they can find application in a semi-supervised scenario. That often
leads to the use of the term unsupervised anomaly detection, even

for problems configured as semi-supervised. Conforming with the
title of the task, we use the term unsupervised anomaly detection
for both of those categories.

DCASE 2020 task 2 poses the challenge of detecting whether
the sound emitted for a target machine is normal or anomalous, un-
der the condition that only normal samples constitute the training
dataset.

2. PROPOSED METHOD

ProtoPNet is a novel method proposed for the task of image clas-
sification, offering the ability to interpret the network’s reasoning
process during classification [8]. With minimum alterations on the
original network’s architecture, the model can be of use in anomaly
detection problems.

The generic ProtoPNet architecture for anomaly detection is
presented in Fig.1. Let X ∈ RMxNxC be the input to a con-
volutional neural network GΘ : RMxNxC → RHxLxD with pa-
rameters Θ. Each prototype {pi}ki=1 is a tensor in RHpxLpxD ,
Hp ≤ H,Lp ≤ L with the desired property that it resembles some
patch/subtensor of the convolutional output GΘ(X). This resem-
blance corresponds to the similarity between each prototype and
some part of the original input X [8].

To compute the distance between the prototype pi and every
patch z ∈ RHpxLpxD of the convolutional output GΘ(X), the gen-
eralized L2 convolution operator is introduced, where the L2 norm
operator replaces the inner product [9]. The resulting distance ma-
trix Mi ∈ R(H−Hp+1)x(L−Lp+1):

Mi = pi �L2 GΘ(X) (1)

where�L2 is the L2 convolution operator, can be used as a similar-
ity heatmap if properly transformed and upsampled to the original
input’s height and width.

By selecting the minimum value of each distance matrix, the
output of the ProtoPNet is the vector:

o =


min(M1)
min(M2)

...
min(Mk)

 (2)

The output vector o quantifies the dissimilarity of every prototype
with regard to some part of the convolutional output GΘ(X). As
there might exist different prototypes that characterize different sets
of normal samples, the loss function and anomaly score for a sample
X are formulated as follows:

A(X) = JΘ,p(X) = min(o) (3)
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Figure 1: Generic ProtoPNet Architecture

The prototypes are trainable parameters that are initialized with
random values. To impose the desired property of similarity be-
tween each prototype and some patch of the convolutional output,
prototype projection is incorporated. Every r training epochs, each
prototype is replaced by its most similar convolutional output patch
for all training samples. More Formally, let Dtrain = {Xi}Ni=1 be
the available training dataset and Z(X) be the set of all possible
patches z ∈ RHpxLpxD of GΘ(X) ∈ RHxLxD . Then:

pi ← argminz(||pi − z||2) ∀z ∈ Z(X),∀X ∈ Dtrain (4)

where← denotes the assignment operator and argminz(w) returns
the value of z that minimizes w.

2.1. ProtoPNet and DOCSVDD

DOCSVDD can be briefly described as a neural network φW :
RMxNxC → RK , that maps the input space to a vector in RK .
The training objective is the estimation of the network’s parameters
W , that map normal samples within the volume of a hypersphere
of center c ∈ RK and radius R [10]. A sample X is classified as
an anomaly if it is mapped outside the hypersphere’s volume. Both
the cost function and the anomaly score for a sample X equate to
the squared distance of the network’s output from the center of the
hypersphere:

A(X) = JW (X) = ||φW (X)− c||2 (5)

Let GΘ : RMxNxC → RHxLxD be the convolutional network
of a ProtoPNet with prototypes {pi}ki=1, pi ∈ RHpxLpxD . In the
special case where k = 1, Hp = H,Lp = L, the L2 convolution
turns into the L2 distance between the convolutional output and the
prototype p1. In this manner, the ProtoPNet turns into a convo-
lutional DOCSVDD with center p1. Furthermore, by utilizing the

prototype projection technique, the center of the hypersphere shifts
adaptively to its nearest point.

Finally, by utilizing more prototypes, ProtoPNet turns into a
DOCSVDD with multiple hyperspheres/clusters that might encap-
sulate more complex structures in the dataset, or be used as a deep
clustering algorithm.

3. EXPERIMENT SETTINGS

The dataset used is comprised partly of the datasets ToyADMOS
[11] and MIMII [12]. It consists of six machine types (Fan, Pump,
Valve, Slider, ToyCar, ToyConveyor), whereas each machine type
corresponds to several physical machines of the same type, identi-
fied by a unique id. For each valid combination of machine type
and machine id, the training dataset consists of only normal au-
dio samples, while the testing dataset consists of both normal and
anomalous samples.

It should be noted that a distinct model is trained and evaluated
per machine id. The models are evaluated on the area under the
curve (AUC) and the partial area under the curve (pAUC) where
0 ≤ FPR ≤ 0.1. For the brevity of presentation, the scores of all
machine ids of the same type are averaged.

3.1. Audio representation

Each audio sample is represented by its mel-spectrogram S ∈
R128x157 of 128 frequency bands, a window length of 128 ms and
50% overlap. The resulting spectrogram is log-scaled after adding
an offset a:

Sp = 10 log10(S + a) (6)

where a ≈ 2.2 10−16 for the ToyADMOS machine types, and a =
1 for the MIMII machine types.

3.2. Training procedure

In general, a different architecture was selected per machine type
as presented in T.1-T.4. The gradient descent optimization is con-
ducted via the Adam optimizer for a batch size of 32 samples. The
network parameters are optimized for 100 training epochs, and the
parameters that result in the lowest validation loss are restored. Fi-
nally, prototype projection is performed every r = 5 epochs.

Table 1: Fan, Pump, Slider Architecture
Layer Output Shape
Conv2D 8@(5, 5, 1) (128, 157, 8)
ReLU (128, 157, 8)
MaxPool2D (3, 3) (42, 52, 8)
Conv2D 8@(5, 5, 8) (42, 52, 8)
ReLU (42, 52, 8)
MaxPool2D (3, 3) (14, 17, 8)
Conv2D 16@(5, 5, 8) (14, 17, 16)
ReLU (14, 17, 16)
MaxPool2D (3, 3) (4, 5, 16)
Conv2D 16@(5, 5, 16) (4, 5, 16)
ReLU (4, 5, 16)
MaxPool2D (3,3) (1, 1, 16)
Proto 1@(1, 1, 16) R
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Table 2: Valve Architecture
Layer Output Shape
Conv2D 8@(5, 5, 1) (128, 157, 8)
ReLU (128, 157, 8)
MaxPool2D (2, 2) (64, 78, 8)
Conv2D 8@(5, 5, 8) (64, 78, 8)
ReLU (64, 78, 8)
MaxPool2D (2, 2) (32, 39, 8)
Conv2D 16@(5, 5, 8) (32, 39, 16)
ReLU (32, 39, 16)
MaxPool2D (2, 2) (16, 19, 16)
Conv2D 16@(5, 5, 16) (16, 19, 16)
ReLU (16, 19, 16)
MaxPool2D (2,2) (8, 9, 16)
Proto 1@(4, 4, 16) R

Table 3: ToyCar Architecture
Layer Output Shape
Conv2D 8@(5, 5, 1) (128, 157, 8)
ReLU (128, 157, 8)
MaxPool2D (2, 2) (64, 78, 8)
Conv2D 8@(5, 5, 8) (64, 78, 8)
ReLU (64, 78, 8)
MaxPool2D (2, 2) (32, 39, 8)
Conv2D 16@(5, 5, 8) (32, 39, 16)
ReLU (32, 39, 16)
MaxPool2D (2, 2) (16, 19, 16)
Conv2D 16@(5, 5, 16) (16, 19, 16)
ReLU (16, 19, 16)
MaxPool2D (2,2) (8, 9, 16)
Proto 3@(6, 6, 16) R3

Table 4: ToyConveyor Architecture
Layer Output Shape
Conv2D 8@(5, 5, 1) (128, 157, 8)
ReLU (128, 157, 8)
MaxPool2D (2, 2) (64, 78, 8)
Conv2D 8@(5, 5, 8) (64, 78, 8)
ReLU (64, 78, 8)
MaxPool2D (2, 2) (32, 39, 8)
Conv2D 16@(5, 5, 8) (32, 39, 16)
ReLU (32, 39, 16)
MaxPool2D (2, 2) (16, 19, 16)
Conv2D 16@(5, 5, 16) (16, 19, 16)
ReLU (16, 19, 16)
MaxPool2D (2,2) (8, 9, 16)
Proto 1@(6, 1, 16) R

4. RESULTS AND DISCUSSION

The average model performance for five independent runs is shown
at T.5, where the ± sign denotes the deviation between different
machine-ids of the same type.

Table 5: Model Performance (Avg ±std)
Machine Type AUC pAUC
Fan 0.8557± 0.08 0.7868± 0.11
Pump 0.7733± 0.07 0.7369± 0.07
Slider 0.8303± 0.14 0.6959± 0.19
Valve 0.8724± 0.09 0.7648± 0.15
ToyCar 0.8211± 0.12 0.7235± 0.14
ToyConveyor 0.7035± 0.08 0.5992± 0.07

The model’s reasonably high pAUC for the majority of the ma-
chine types is encouraging as to the competence of ProtoPNet in
an unsupervised anomaly detection scenario. We suspect that the
relatively lower results for ToyConveyor are due to the class imbal-
ance imposed on the dataset (greater than 2:1 normal to anomalous
test samples). Finally, spectrogram preprocessing has proven to be
of immense importance regarding the model’s performance while
there is no one size fits all method since machine types from differ-
ent datasets required unique preprocessing approaches.
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