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ABSTRACT 

This report proposes a polyphonic sound event detection (SED) 
method for the DCASE 2020 Challenge Task 4. The proposed 
SED method is based on semi-supervised learning to deal with the 
different combination of training datasets such as weakly labeled 
dataset, unlabeled dataset, and strongly labeled synthetic dataset. 
Especially, the target label of each audio clip from weakly labeled 
or unlabeled dataset is first predicted by using the mean teacher 
model that is the DCASE 2020 baseline. The data with predicted 
labels are used for training the proposed SED model, which con-
sists of CNNs with skip connections and self-attention mechanism, 
followed by RNNs. In order to compensate for the erroneous pre-
diction of weakly labeled and unlabeled data, a semi-supervised 
loss function is employed for the proposed SED model. In this 
work, several versions of the proposed SED model are imple-
mented and evaluated on the validation set according to the dif-
ferent parameter setting for the semi-supervised loss function, and 
then an ensemble model that combines five-fold validation mod-
els is finally selected as our final model. 
  

Index Terms— Polyphonic sound event detection, 
semi-supervised loss function, self-attention mechanism 

1. INTRODUCTION 

Sound event detection (SED) is a task of classifying individual 
sound events in diverse sound environments and detecting the on-
set and offset times of each detected sound event. SED can support 
understanding of multimedia contents in more detail and monitor 
acoustic scenes for various applications such as audio surveillance 
[1], audio monitoring in smart cities [2], life assistance and health 
care [3], and so on.  

While deep learning-based SED systems that are trained us-
ing a large amount of strong labeled data provide good perfor-
mance, reliably annotating temporal extents of event occurrence is 
very difficult and time-consuming due to human errors [4]. Since 
2017, the Detection and Classification of Acoustic Scenes and 
Events (DCASE) Challenge has featured an SED task to deal with 
weakly labeled data that do not have any time stamps for given 
audio events [5, 6]. 

The DCASE Challenge 2020 Task 4, which is the follow-up 
to the DCASE Challenge 2019 Task 4, focuses on detecting poly-
phonic sound events, where the SED model should be developed 
using three different datasets: a weakly labeled dataset, unlabeled 
in-domain dataset, and a few strongly labeled synthetic data. Ac-
cording to the results of the DCASE Challenge 2019 Task 4, some 
of top-ranked models were based on a mean teacher model [4] 
trained by both weakly labeled data and unlabeled data with con-
sistency regularization. Specifically, the mean teacher model aims 
to learn the two same structures, while the teacher model aims to 
help the student model during training and its model parameters 
are updated by the exponential moving average of the student 
model parameters.  

Instead of modifying the mean teacher model, we propose an 
SED model that uses a semi-supervised loss function [7] that com-
bines a supervised loss function for strongly labeled data and an 
unsupervised loss function for weakly-labeled or unlabeled data. 
For this loss function, we need to give a label and time stamp for 
each weakly labeled or unlabeled dataset. This is performed by us-
ing the mean teacher model prior to training the proposed SED 
model. The proposed SED model is composed of convolutional 
neural networks (CNNs) with skip connection, followed by con-
volutional block attention, which carries out a self-attention mech-
anism. Finally, recurrent neural networks (RNNs) are connected 
to the prediction layer for detecting events and time-stamps.  

2. DATASET 

The dataset of DCASE 2020 Challenge Task 4 consists of three 
types in the training process: 1) weakly labeled training dataset 
(without timestamp), 2) unlabeled in-domain training dataset 
without any label, and 3) strongly labeled synthetic dataset. The 
weakly labeled and the unlabeled in-domain training datasets are 
taken from the AudioSet [8], but the strongly labeled synthetic 
dataset is generated using the Scaper soundscape synthesis and 
augmentation library [9]. The weakly labeled training dataset con-
tains 1,578 audio clips with weak annotation only, where there are 
2,244 class occurrences. The unlabeled in-domain training dataset 
and the strongly labeled dataset contain 14,412 and 2,584 audio 
clips, respectively. Each audio clip is stored as both mono and 
stereo-channel signals that are sampled at 44.1 kHz with a maxi-
mum duration of 10 seconds.  
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For a given dataset, we first take mono-channel signals and 
resample them from 44.1 to 16 kHz. After that, each resampled 
audio signal is segmented into consecutive frames of 512 samples 
with 255 samples of hop length. Then, a 512-point fast Fourier 
transform (FFT) is applied to each separated signal, and a 128-
dimensional mel-filterbank analysis is performed for each frame. 
Since each 10-second audio clip is represented by 628 frames, the 
dimension of input feature for the SED model is 1×628×128. Note 
here that zero padding is applied to the audio clips that are shorter 
than 10 seconds. Finally, the extracted mel-spectrogram features 
are normalized by the global mean and the standard deviation over 
all the training audio clips. 

3. PROPOSED SED METHOD 

Fig. 1 shows a block diagram of the proposed SED method. As 
shown in the figure, we first train a mean teacher model that is 
identical to the baseline of the DCASE Challenge 2020 Task 4 [4]. 
Next, time stamps for each training audio clip are decoded using 
the trained mean teacher model. In other words, each of the 
weakly-labeled or unlabeled audio clips is inferred using the mean 
teacher model, resulting in a (157×10)-dimensional time-stamp 
map that will be used for the target of the SED model. For the 
strongly labeled dataset, we just use the given label and time-
stamp for the target. After that, such target time-stamps for all the 
training audio clips are brought to train the proposed SED model.  

Fig. 2 shows the network architecture of the proposed SED 
model that is composed of a series of convolutional layer blocks 
with skip connections and three convolutional attention blocks, 
followed by RNNs and prediction layer. To train the proposed 
model, the semi-supervised loss function is employed to accom-
modate the ambiguity of the time-stamps predicted for the 
weakly-labeled and unlabeled datasets, as described in Fig. 1.  

3.1. Proposed CRNN architecture 

This subsection explains the network architecture of the proposed 
SED model in detail. As shown in Fig. 2, the input feature whose 
dimension is 1×628×128 is applied to a stem block that consists 
of two convolutional blocks. Each convolutional block contains 
two CNN layers and a 2×2 average pooling layer. Following the 
stem block, the skip connected convolution (SCC) block is com-
prised of five convolutional blocks. The upper part of the SCC 
block is composed of three convolutional blocks, each of which 
contains two CNN layers. In addition, the lower part of the SCC 
block is composed of two convolutional blocks that contain two 
CNN layers each with a (1×2) average pooling layer. The outputs 
of the first and second convolutional blocks of the upper part of 

the SCC block are concatenated into the second and first convo-
lutional blocks of the lower part of the SCC block, as shown in 
the figure. Moreover, the convolutional block attention module 
(CBAM) [10] is applied to the three convolutional blocks of the 
lower part of the SCC block. After that, the feature map extracted 
from the CNN block is average pooled on the frequency axis and 
connected to the recurrent block. The recurrent block is composed 
of two bi-directional long short-term memory (BLSTM) networks 
with 128 hidden nodes each. Finally, a fully connected (FC) layer 
is used as the output layer, whose dimension is 157×10. A recti-
fied linear unit (ReLu) is used as the activation function for all the 
layers except the output layer, while the sigmoid function is used 
for the output layer. 

3.2. Data augmentation 

It is known that data augmentation can improve prediction accu-
racy when the amount of training data is limited as in this DCASE 
Challenge. In this work, we perform both the mix-up data aug-
mentation [11] and the spec augmentation [12]. Mix-up augmen-
tation creates a new training sample by mixing a pair of two ran-
domly chosen training samples. Spec augmentation is an effective 
approach which shows significant performance improvement in 
acoustic speech recognition recently. It replaces values by zeros 
in randomly chosen time-frequency bands. Then, a global noise 
level is computed to add a random Gaussian noise with zero mean 
and unit standard deviation matching this global noise level. 

3.3. Semi-supervised loss function  

As mentioned earlier, the proposed model is trained by using three 
different datasets: strongly labeled (S), weakly labeled (W), and 
unlabeled (U) datasets. Among them, each of the weakly-labeled 
and unlabeled audio clips is labeled using the mean teacher model. 

 
Figure 1: Procedure of the proposed semi-supervised SED 
method. 
 
 
 

 
Figure 2: Network architecture of the proposed SED model. 
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However, these predicted labels could be erroneous because the 
performance of the mean teacher model is not perfect, and the un-
reliability of predicted labels could affect the training of the pro-
posed SED model.  

To remedy this problem, a semi-supervised loss function is 
defined with the help of the loss function in [7], such as 

𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = −
1
𝑀𝑀

� � �𝑦𝑦�𝑠𝑠𝑘𝑘,𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦�𝑠𝑠𝑘𝑘,𝑐𝑐
𝐾𝐾,𝐶𝐶

𝑘𝑘=1,𝑐𝑐=1𝑠𝑠∈{𝑆𝑆,𝑊𝑊,𝑈𝑈},

+ �1 −  𝑦𝑦�𝑠𝑠𝑘𝑘,𝑐𝑐� 𝑙𝑙𝑙𝑙𝑙𝑙�1 − 𝑦𝑦�𝑠𝑠𝑘𝑘,𝑐𝑐�� 

 

(1) 

                𝑦𝑦�𝑠𝑠𝑘𝑘,𝑐𝑐 = 𝛽𝛽𝑠𝑠𝑦𝑦𝑠𝑠𝑘𝑘,𝑐𝑐 + (1− 𝛽𝛽𝑠𝑠) 𝑦𝑦�𝑠𝑠𝑘𝑘,𝑐𝑐 (2) 

where 𝑀𝑀 is the total number of data in training set,  𝑦𝑦�𝑠𝑠𝑘𝑘,𝑐𝑐 is k-time 
frame and c-th class output value when an audio clip belonging to 
the dataset s is inputted, and 𝑦𝑦𝑠𝑠𝑘𝑘,𝑐𝑐 is the target value corresponding 
to 𝑦𝑦�𝑠𝑠𝑘𝑘,𝑐𝑐. Thus, 𝛽𝛽𝑠𝑠 is a parameter to control the influence of weakly 
labeled and unlabeled data; thus, 𝛽𝛽𝑠𝑠 =1 for 𝑠𝑠 ∈ 𝑆𝑆, which results in 
a binary cross-entropy loss function, and 0 < 𝛽𝛽𝑠𝑠  <1 for 𝑠𝑠 ∈ {𝑊𝑊,𝑈𝑈}. 
In Eq. (1), C and K are the numbers of classes and time dimensions. 
In this work, C=10 and K=157. 

4. EXPERIMENT RESULTS 

The proposed SED models with different 𝛽𝛽𝑠𝑠′𝑠𝑠 were learnt by using 
training datasets described in Section 2. For training the baseline 
and proposed SED models, each batch was designed to include a 
combination of unlabeled, weakly labeled, and strongly labeled 
synthetic audio clips, with 1/4, 1/2, and 1/4 portions, respectively. 
In particular, each of the proposed SED models was trained by 5-
fold cross validation by dividing all the data in the training set into 
5 folds, where 4 out 5 folds were used for training and the remain-
ing fold was used for validation. Finally, an ensemble classifier 

was obtained by linearly combining 5-fold models for a given 𝛽𝛽𝑠𝑠. 
Note here that the baseline was trained according to the recipe 
given by the challenge. However, the Adam optimizer was used 
for training the proposed models, where the early stopping tech-
nique was employed and the dropout was applied with a rate of 0.3. 
The learning rate was set to 0.0009, and it was reduced by the sim-
ple learning rate schedule by a constant factor when the perfor-
mance metric using mean square error (MSE) plateaus on the val-
idation set (commonly known as ReduceLRonPlateau in Pytorch).  

Table 1 compares the performance of the validation set pre-
dicted by the baseline and proposed models with different param-
eter settings, where the performance was measured by the event-
based metric (macro-average F1-score and error rate (ER)) and the 
polyphonic sound detection score (PSDS) [13]. The validation set 
was composed of 1,168 audio clips with strong labels including 
time-stamps. We first obtained four different proposed models by 
setting 𝛽𝛽𝑠𝑠 from 0.3 to 0.9 at a step of 0.2. The results at the second 
to fifth row of the table were obtained by averaging all the 5-fold 
validation results. Compared to the baseline, all the models with 
different 𝛽𝛽𝑠𝑠′𝑠𝑠 were better than the baseline in all the performance 
metrics. Especially, the proposed model with 𝛽𝛽𝑠𝑠 = 0.5 achieved 
higher F1-score and lower ER by 5.52 and 0.25, respectively, than 
the baseline.  

Next, we combined 5-fold models into a single classifier. In 
this case, the ensemble model with 𝛽𝛽𝑠𝑠=0.9 was the best in terms of 
event-based metrics, while the ensemble model with 𝛽𝛽𝑠𝑠=0.5 pro-
vided the highest PSDS scores for all the ensemble models. Com-
pared to the baseline, the ensemble model increased F1-score by 
7.99 and decreased the ER by 0.35. Also, the PSDS score was in-
creased by 0.115 when the ensemble classifier of the proposed 5-
fold models with 𝛽𝛽𝑠𝑠=0.5.  

5. CONCLUSION 

This report proposed a semi-supervised learning method for poly-
phonic SED when the training data were strongly labeled, weakly 
labeled, or unlabeled. To this end, weakly labeled or unlabeled 
data were each first predicted by using the mean teacher model. 
The data with predicted labels were used for training the proposed 
SED model that consisted of CNNs with skip connections and self-
attention mechanism, followed by RNNs. In order to compensate 
for the erroneous prediction of weakly labeled and unlabeled data, 
a semi-supervised loss function was employed for the proposed 
SED model.  

From the performance evaluation of the proposed SED 
model on the validation set, it was shown that the ensemble SED 
model after 5-fold validations achieved an F1-score 7.99 higher 
and an error rate 0.35 lower than the baseline of the DCASE Chal-
lenge 2020 Task 4. Also, the PSDS improvement of 0.115 was 
achieved by the ensemble classifier, compared to the baseline. 
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Table 1: Comparison of performance metrics on the validation 
set. 

Method 
Event-based metrics 

PSDS 
PSDS 
cross- 
trigger 

PSDS 
macro F1-score 

(%) Error rate 

Single model 

Baseline 37.24 1.39 0.610 0.524 0.442 

Proposed 
model  

(𝛽𝛽𝑠𝑠 =0.3) 
41.92 1.17 0.698 0.632 0.537 

Proposed 
model  

(𝛽𝛽𝑠𝑠 =0.5) 
42.46 1.14 0.701 0.637 0.544 

Proposed 
model  

(𝛽𝛽𝑠𝑠 =0.7) 
41.18 1.15 0.700 0.636 0.541 

Proposed 
model  

(𝛽𝛽𝑠𝑠 =0.9) 
42.41 1.13 0.697 0.632 0.532 

5-fold  
ensemble  

model 

Proposed 
model  

(𝛽𝛽𝑠𝑠 =0.3) 
44.60 1.05 0.724 0.666 0.560 

Proposed 
model  

(𝛽𝛽𝑠𝑠 =0.5) 
45.23 1.05 0.725 0.667 0.562 

Proposed 
model  

(𝛽𝛽𝑠𝑠 =0.7) 
44.53 1.04 0.725 0.667 0.562 

Proposed 
model  

(𝛽𝛽𝑠𝑠 =0.9) 
43.96 1.07 0.721 0.665 0.558 
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