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ABSTRACT 

In this technical report, we describe our acoustic scene classifi-

cation methods submitted to detection and classification of 

acoustic scenes and events challenge 2020 task 1a. Our proposed 

methods aim to maximize the differences between acoustic scene 

classes and minimize the differences between various devices. 

We obtained the inter-class and inter-device standard deviations 

of the training data and applied them to the log-mel spectrogram 

features. These features are added to the channel of the original 

log-mel spectrogram. In addition, we applied class-wise random 

masking for the frequency domain with small standard devia-

tions. Then, masked features are divided into quarters on the 

frequency axis. They are trained using four-pathway residual 

convolutional neural networks. Our proposed methods achieved 

an overall accuracy of 72.7% for the official development da-

taset, which was an improvement by 18.6% over the official 

baseline. 

Index Terms— Acoustic scene classification, standard 

deviation, multi-channel, masking, convolutional neural 

networks 

1. INTRODUCTION 

Task 1 of the 2020 detection and classification of acoustic scenes 

and events (DCASE) challenge pertains to acoustic scene classi-

fication. In particular, task 1a aims to classify 10 acoustic scenes 

under conditions recorded on various devices. In other words, it 

focuses on solving the generalization property of the classifica-

tion model to minimize the heterogeneity between devices. 

Classes of acoustic scenes are composed of airports, bus 

travels, underground metro travels, metro stations, urban parks, 

public squares, indoor shopping malls, pedestrian streets, streets 

with medium traffic level, and tram travels [1]. The classed of 

devices are composed of four real devices (A–D) and 11 simu-

lated devices (S1–S11). The evaluation dataset is an open set in 

which new devices (D, S7–S11) that are not in the development 

dataset are added. 
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2. MOTIVATIONS 

2.1. Previous approaches 

To minimize heterogeneity between devices, various acoustic 

scene classification models have been proposed in the DCASE 

challenge [2–6]. Past entries used convolutional neural networks 

(CNNs), which mainly used to process audio signals as images. 

The audio signal is converted to acoustic features, such as the 

log-mel spectrogram and mel-frequency cepstral coefficients. 

The converted signal is two-dimensional feature vectors com-

prising temporal and frequency axes and are used as an input to 

the CNNs. 

In particular, McDonnell et al. [3], who achieved the sec-

ond highest performance in DCASE 2019 task 1b, proposed the 

following: 1) They used delta and delta-delta features for log-

mel spectrogram 2) They divided the features separately into two 

features based on the frequency axis. 3) They trained the sepa-

rated features in a two-pathway residual CNNs. These methods 

demonstrated relatively high performances for new devices not 

included in the training dataset. However, they demonstrated 

relatively low performances for scene classes such as public 

squares and pedestrian streets. 

2.2. Proposed approaches 

We aim to maximize interclass variability and minimize inter-

device variability. Each of the 10 acoustic scene classes and 

multiple devices were patterned on the temporal and frequency 

axes, respectively [3, 7]. We used the standard deviation to 

determine the distribution of features on the frequencies of each 

class and device. In addition to the log-mel spectrogram, fea-

tures reflecting class-wise and device-wise distributions were 

used for training.   

Furthermore, we assumed that the frequency domain with a 

low standard deviation was unnecessary information that caused 

confusion in the training. Therefore, we used class-wise random 

masking for the low standard deviation domain. Specifically, we 

expect to improve the classification accuracy for confusing scene 

classes, such as public squares and pedestrian streets. In addition, 

based on the proposed methods of McDonnell et al., the parame-

ters of the channel and residual pathway were changed. 
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3. PROPOSED METHODS 

3.1. Feature preprocessing 

The development dataset comprised a training dataset and an 

evaluation dataset. The training and evaluation datasets com-

prised 13,962 and 2,968 audio clips, respectively [1]. All audio 

clips featured a 44.1 kHz sampling rate, 2 bytes per sample, and 

a mono channel. In addition, to calculate the log-mel spectro-

gram feature, we used 2,048 fast Fourier transform points and 

1,024 hop-lengths. We extracted the power spectrum using the 

LibROSA library and applied the log-mel scale. 

Consequently, we obtained a log-mel spectrogram with 128 

frequency bins and 423 frames. In addition, the delta and delta-

delta features of the log-mel spectrogram were calculated and 

added to the channel. To obtain the same temporal size, we 

applied padding to the delta and delta-delta features. Therefore, 

the log-mel spectrogram measured 128 × 423 × 3. 

3.2. Multi-channel feature 

We calculated the class-wise averages for 13,962 training da-

tasets and 128 frequency bin axes. Therefore, 128 average values 

were generated for each class. From the generated average value, 

the overall mean value for all classes on the 128 frequency axes 

was obtained. Next, the variance and standard deviation were 

obtained for 128 frequencies in order. The same process was 

applicable to the devices. 

 

 

Figure 1 : Overall means of the spectrogram (The top 

represents class-wise domain, the bottom represents de-

vice-wise domain) 

 

Figure 1 and Figure 2 show the spectrogram for which the 

overall mean and overall standard deviation of the class and 

device were obtained. We calculated the log-mel spectrogram by 

multiplying the overall standard deviation of the class and divid-

ing the overall standard deviation of the device. Hence, for the 

log-mel spectrogram, two more features with class-wise and 

device-wise standard deviations applied were generated. By 

applying the same to the delta and delta–delta features, multi-

channel features were constructed. Therefore, the modified log-

mel spectrogram measured 128 × 423 × 9. 

 

Figure 2 : Overall variances of the spectrogram (The top 

represents class-wise domain, the bottom represents de-

vice-wise domain) 

 

Figure 3 shows the spectrograms of each channel of the 

multi-channel feature. Using these multi-channel feature, the 

differences between different classes in the training process is 

maximized, and the differences between the same devices are 

minimized. 

 

 

Figure 3: Multi-channel feature applied class-wise and 

device-wise standard deviations (row 1: log-mel spectro-

gram, delta feature, delta-delta feature, row 2: class-wise 

features, row 3: device-wise features) 

3.3. Class-wise random masking 

Frequency domains with low standard deviations are likely to 

confuse classes when training. Therefore, we considered these 

domains as unnecessary information and used the masking 

method. On the spectrogram depicting the overall standard 

deviation value, 64 frequency bins were selected in the order of 

low value. Then, shuffling is applied to the selected frequency 

bins. Finally, for five among 64 frequency bins, all temporal 

frame values were masked with 0. This process was applied to 

all channels. Consequently, multi-channel features using class-

wise random masking were generated. 

3.4. Four-pathway residual CNNs 

Our model is based on the model proposed by McDonnell et al. 

We divided the multi-channel feature into four sections, i.e., the 

frequency bin sections of (0–32), (32–64), (64–96), and (96–

128), which were used as the input of the model. Each input size 

featured 32 × 423 × 9. The divided inputs were trained using 

four residual layers. Each residual layer comprised two residual 
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blocks, and each residual block comprised a batch normalization, 

nonlinear activation function, and convolutional layer [8]. 

Therefore, it was composed of 17 convolutional layers, includ-

ing the first convolutional layer. The kernel size in all convolu-

tional layers was 3 × 3. In addition, when down-sampling oc-

curred between the residual layers, zero padding was applied [3]. 

The residual CNNs composed of four pathways independently 

trained each separated features. 

Then, the divided feature were concatenated to 128 fre-

quency dimensions. The concatenated features were fed into two 

residual layers. Finally, it was transformed into 10 dimensions 

using batch normalization and global average pooling. The 10 

dimensions generated the output probability values for each 

acoustic scene class using the softmax function.  

Furthermore, we changed various training parameters, such 

as the leaky ReLU and global max pooling. However, we con-

firmed that their performances were worse than those of previ-

ous parameters. 

3.5. Additional training methods 

Regularization methods were effective in preventing overfitting. 

For all convolutional layers, a weight decay value of 5 × 0.0001 

was used. In addition, when generating training data, both mixup 

augmentation [9] and temporal crop augmentations [3] were 

applied. We did not use additional training datasets other than 

the official training dataset. 

3.6. Training parameters 

All experiments in this paper were conducted using Keras [10]. 

The optimizer used the stochastic gradient descent with a 0.9 

momentum weight. For the loss function, the categorical cross-

entropy loss was used. All our models were trained for 1,022 

epochs with a batch size of 32. Considering the multi-channels 

and masking, an additional epoch was required for convergence. 

In addition, the learning rate was set to 0.1, along with a decay 

factor of 1 × 0.00001. At epoch 2, 6, 14, 30, 126, 254, and 511, 

the learning rate was reset to obtain the re-training effect [11]. 

We used the checkpoint with the highest validation accuracy as 

the best model. 

4. RESULTS AND SUBMISSION 

We used the evaluation dataset of the official development da-

taset to evaluate the performance of the proposed model [1]. This 

dataset comprises 2,968 audio clips. In addition, it is an open set 

in which new devices (S4–S6) that are not in the training set are 

added. Using this dataset, the overall accuracy (based on recall) 

and log-loss (based on multiclass cross-entropy) were measured. 

As in Table 1, we tested the proposed methods by varying the 

number of channels, applying masking, and varying the number 

of model pathways. In addition, as in Tables 2 and Table 3, we 

tested class-wise and device-wise experiments on our proposed 

model, respectively.  

Consequently, four single models (A–D) were selected for 

submission as follows: A) 5-channel-mask-2-pathway, B) 7-

channel-mask-2-pathway, C) 7-channel-mask-4-pathway, and D) 

9-channel. The overall accuracy of models A, B, C, and D was 

72.7%, 71.0%, 72.2%, and 71.7%, respectively. The overall 

accuracy of the official baseline model [12] for the same evalua-

tion dataset was 54.1%. Therefore, our best performance showed 

an absolute improvement of approximately 18.6% over the 

official baseline. 

 

Table 1 : The performances of proposed models 

Model Channels Masking Pathway Acc. Loss 

A 5 Y 2 72.7 1.307 

B 7 Y 2 71.0 1.301 

C 7 Y 4 72.2 1.408 

D 9 N 2 71.7 1.292 

 

Table 2 : The class-wise accuracies of proposed models 

Class / Model A B C D 

airport 59.1 52.7 58.1 59.5 

bus 82.2 82.5 81.5 80.5 

metro 78.8 75.4 78.5 72.4 

metro station 75.1 73.4 76.4 73.7 

park 92.3 91.6 89.2 90.9 

public square 51.2 55.2 53.5 47.5 

shopping mall 71.4 71.0 71.7 71.0 

street pedestrian 53.2 45.5 46.5 56.2 

street traffic 89.2 89.2 90.9 88.9 

tram 74.7 73.0 75.3 76.0 

 

Table 3 : The device-wise accuracies of proposed models 

Device  / Model A B C D 

A 78.5 79.4 81.2 79.7 

B 72.2 71.1 72.1 72.1 

C 78.1 77.2 76.0 76.6 

S1 73.0 72.1 70.3 70.9 

S2 69.7 64.8 67.9 65.8 

S3 72.7 72.4 74.8 74.5 

S4 73.0 67.3 71.5 68.8 

S5 69.4 67.6 70.9 70.0 

S6 66.1 65.2 63.9 66.1 

 

5. CONCLUSION 

We propose acoustic scene classification models for DCASE 

2020 task 1a. We calculated the class-wise and device-wise 

standard deviations and generated multi-channel features. The 

generated features was applied with class-wise random masking 

for the low standard deviation domain. In addition, the residual 

CNNs was used by separating the frequency axis into four parts. 

Our proposed method showed an overall accuracy of 72.7% for 

the official development data, which improved by 18.6% over 

the official baseline. 
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