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ABSTRACT

This technical report describes the CP-JKU team’s submission for
Task 1 – Subtask A (Acoustic Scene Classification with Multiple
Devices) and Subtask B (Low-Complexity Acoustic Scene Classifi-
cation) of the DCASE-2020 challenge [1]. For Subtask 1.A, we pro-
vide our Receptive Field (RF) regularized CNN model as a baseline,
and additionally explore the use of two different domain adaptation
objectives in the form of the Maximum Mean Discrepancy (MMD)
and the Sliced Wasserstein Distance (SWD). For Subtask 1.B, we
investigate different parameter reduction methods such as Pruning,
while maintaining the receptive field of the networks. Additionally,
we incorporate a decomposed convolutional layer that reduces the
number of non-zero parameters in our models while only slightly
decreasing the accuracy, compared to the full-parameter baseline.1

Index Terms— acoustic scene classification, receptive-field
regularization, domain adaptation, pruning, network decomposition

1. INTRODUCTION

Receptive-Field regularized Convolutional Neural Networks (RFR-
CNNs) have proven to be very effective in different acoustic tasks
such as Acoustic Scene Classification (ASC) [2, 3, 4], device-
invariant ASC [5, 6, 4], open-set ASC [5, 7], Audio-tagging with
noisy labels and minimal supervision [8, 4], and emotion and theme
recognition in music [9]. Because of these successes, for our sub-
missions to this year’s DCASE challenge, we incorporate RFR-
CNN architectures. In addition, we introduce a new method that
allows us to not only limit the RF of the models, but also control
the Effective Receptive Field [10, 2] in deep CNNs. We adapt the
networks for the challenge tasks [1] using Domain Adaptation for
Task 1A, specifically, Sliced Wasserstein Distance (SWD) [11], and
Maximum Mean Discrepancy (MMD) [12]. For Task 1B, where a
limited model size is required, we use weight pruning [13, 14], layer
decomposition [15] and width/depth reduction of the basis network.

2. EXPERIMENTAL SETUP

We refer the reader to the CP-JKU team’s DCASE 2019 technical
report [4] as we use an identical setup. No external data was used.

1Source code available at : https://github.com/kkoutini/
cpjku_dcase20

3. ARCHITECTURES

3.1. Baseline ResNet Architecture: CP-Res

We base our experiments on the ResNet architecture explained
in [3]. Our initial experiments showed that the optimal RF size for
task 1A corresponds to ρ = 6 and ρ = 7. For task 1B, preliminary
experiments indicated that best performance is achieved with ρ = 3
and ρ = 4. We call the original ResNet proposed in [2, 3] CP-Res
throughout the report.

3.2. Frequency Damping: CP-Res Damp

The results of [2] showed that restricting the RF of the CNNs, espe-
cially over the frequency dimension, results in a better generaliza-
tion in various ASC datasets. We improved the performance of the
proposed architectures by further restricting the effective receptive
field of the convolutional layer [10, 2]. Each convolutional neuron
has a limited receptive field of its layer input. We reduce the in-
fluence of a neuron input, the further away the input is from the
center of the neuron’s receptive field. The resulting networks are
called damped CNNs. In practice, we damp the filters of a con-
volutional layer by element-wise multiplying the weights with a
non-trainable constant matrix C ∈ RT×F (damping matrix). The
damping matrix matches the spatial shape of the filters and works
by decaying the effect, on the output, of outermost elements of the
filter over the frequency dimension. In the resulting network, ev-
ery convolution operation On = Wn ∗ Zn−1 + Bn is replaced by
On = (Wn � Cn) ∗ Zn−1 +Bn, where ∗ is the convolution oper-
ator and � is the element-wise multiplication operator, Zn−1 is the
output of the previous layer, Wn is the filter trainable weight, and
Bn is the bias. The matrix has a value of 1 in the center and decays
linearly to reach a value λ; we used λ = 0.1 in our submissions.
We refer to this architecture as CP-Res Damp in this report.

4. TASK 1A: ACOUSTIC SCENE CLASSIFICATION WITH
MULTIPLE DEVICES

4.1. Domain Adaptation

As the distributions of sound from different devices differ, models
trained on one device often have problems generalising to unseen
devices [16, 6]. To reduce the mismatch between the source de-
vices (given in the training set) and target devices (in the unseen
test set), we incorporate two Domain Adaptation (DA) objectives,
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namely, Sliced Wasserstein Distance (SWD) [11], and Maximum
Mean Discrepancy (MMD) [12].

In order to reduce the distribution mismatch in our models, we
first create two batches of samples with mixed devices, and then use
the encoding of the high-level embeddings of the models to reduce
mismatch by applying the DA loss. As the model continues to train,
the reduction in the DA losses forces the model to create device-
invariant representations. This approach is a simple, yet effective
method that neither requires any paired data nor label information
from various devices. A comparison of our methods can be found
in Table 1.

4.2. Results

Table 1 compares the result of our models with and without domain
adaptation on the development set. The frequency damping intro-
duced in Section 3.2 improves the accuracy of our baseline ResNet
by approximately 1%. Using a DA objective slightly improves our
results in case of SWD, while MMD yields on average a worse ac-
curacy than the reference baseline.

Model DA Accuracy

CP-Res [2, 3] 7 0.6981
CP-Res Damp. 7 0.7107
CP-Res Damp. MMD 0.7080
CP-Res Damp. SWD 0.7180

Table 1: Comparison of our domain adaptation (DA) approaches
to two baselines on the DCASE‘20 Development Test-Split. Res
Damp. refers to a ResNet with frequency-damping as introduced in
Section 3.2. We additionally test this architecture in combination
with two DA objectives MMD and SWD. All the networks are built
using ρ = 6 [3]. The table shows the mean of the accuracy of the
last 10 epochs for each model.

4.3. Submissions Summary

All the submitted systems are trained on the whole development set.
We average the prediction of the last 5 epochs because there is no
remaining validation set.

• Submission 1: CP ResNet Frequency-Damped We train
a single network with ρ = 7 and frequency damping, and
submit the mean of its predictions in the last 5 epochs of
training.

• Submission 2: CP ResNet F-damped SWD We train a
single network with ρ = 6 and frequency damping with an
additional Sliced Wasserstein Distance (SWD) as a domain
adaptation loss, and submit the mean of its predictions in
the last 5 epochs of training as well as the predictions of
the 5 last Stochastic Weight Averaging (SWA) models (as
explained in [4]).

• Submission 3: CP ResNet DA and non-DA ensemble We
average the predictions of 14 models (ρ = 6 or ρ = 7;
damping or basis network; without DA, with SWD or with
MMD). For each model we also average the last 5 SWA and
non-SWA models.

• Submission 4: CP ResNet DA ensemble Similar to sub-
mission 3, but we only average the predictions of the models
trained with domain adaptation loss.

5. TASK 1B: LOW-COMPLEXITY ACOUSTIC SCENE
CLASSIFICATION

The goal of Task 1B is to learn low-complexity models, i. e., models
with a restricted number of parameters, to classify three different
acoustic scenes. The model size is restricted to 500 KB of non-zero
parameters which translates to 128K and 256K parameters with full
and half floating point precision, respectively.

We train the models using full precision floating point data type
for the parameters and the gradients. We cast the model weights to
half precision floating point for inference and testing. Our experi-
ments on the development set showed no (or insignificant) perfor-
mance drop after casting the parameters to half precision.

5.1. Approaches

In the following, we investigate different methods to maintain a
high classification accuracy while keeping the number of param-
eters within the allowed limit. In all the approaches, we follow the
principle of reducing the number of parameters while keeping the
final receptive field of the network constant.

5.1.1. Width and Depth restriction

The basis ResNet [2, 3] has many 1 × 1 convolutional layers that
significantly increase the number of parameters without affecting
the final receptive field of the network. Since the task is simpli-
fied to a 3 class classification problem, we experimented with re-
moving several number of this layers without a significant perfor-
mance drop. Furthermore, reducing the width of the network has
a large impact on the number of parameters without a significant
performance drop. Since the width of the network i. e., the number
of channels in the convolutional layers has a quadratic relationship
with the number of parameters in the convolutional weights.

5.1.2. Parameter Pruning

For each convolutional layer we learn a pruning mask by replacing
each convolution On = Wn ∗ Zn−1 by On = (Wn � g(Mn)) ∗
Zn−1 Where ∗ is the convolution operator. � is the element-wise
multiplication operator, Zn−1 is the output of the previous layer,
Wn is the filter trainable weight. Mn is the learnable pruning mask
weights and has the same shape as Wn. g(x) is the gating function.
We define g(x) to work in the forward pass as a binary gate:

g(x) =

{
0 x ≤ 0
1 x > 0

(1)

In the backward pass g passes the gradient to the pruning mask Mn

as a Sigmoid activation:
d

dx
g(x) =

e−x

(1 + e−x)2
. This learning

approach allows the original weights of the network to be learned as
if g(Mn) is a constant mask, while the pruning weights are learned
as a scale of the original weights. Therefore, we can sort the pruning
weights based on their value in order to reach a required pruning
ratio.

The overall adaptive-pruning learning algorithm works by lin-
early increasing the pruning ratio p from 0 to a specific ratio to
achieve the required number of parameters. We start training by set-
tingMn = 1 for all the layers. At the end of each training epoch we
sort the learned pruning mask weights M (either per layer or glob-
ally) and set a portion ( corresponding to p) of the smallest weights
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to −1 effectively pruning the corresponding weight. We reset the
remaining elements of M to 1 for the next epoch, and repeat after
the epoch for the new value of p.

5.1.3. Decomposed Convolutions

Inspired by the use of singular-value-decomposition (SVD) for con-
volutional neural networks [15], we propose to directly train de-
composed convolutional layers. Given a regular convolutional layer
with dimensionality

Cin × Cout × k × k, (2)

with Cin and Cout being the number of input and output filters,
respectively and k the kernel size. Such a layer can be decomposed
into three convolutional layers using a compression factor Z

Cin × (Cout/Z)× 1× 1

(Cout/Z)× (Cout/Z)× k × k
(Cout/Z)× Cout × 1× 1

(3)

For example, a 128 × 128 × 3 × 3 convolution has 147456
parameters (neglecting the bias). Using a compression factor Z =
4, we get three convolutions 128×32×1×1, 32×32×3×3 and
32 × 128 × 1 × 1, resulting in 17408 parameters. In this way we
construct a model with less than 20000 parameters which achieves
more than 95.8% accuracy on the development set.

5.2. Results

Table 2 compares the result of our models with different number
of parameters on the development set. Our baseline ResNet with
frequency-damping achieves 97.6% accuracy on the test data, how-
ever with more than 3 million parameter it exceeds the parame-
ter limitation. Our pruned network (CP-Res Damp.-GP) is able to
achieve a similar accuracy of 97% with approximately 13 times less
parameters, thus staying within the parameter limit. Our smallest
models relying on decomposed convolutions still achieve an accu-
racy close to 96% with only 1% of the parameters of the baseline
model.

5.3. Submissions Summary

All the submitted system are trained on the whole development
set, the weights are converted to half precision floating point, the
learned pruning mask (if exist) is applied to the weights and pruning
weights are set to zero. We then report the final number of non-zero
parameters and the model size.
• Submission 1: CP ResNet Decomposed

We decompose the convolutional layers of the network (ρ =
4) as explained in Section 5.1.3. the resulting network has
17520 parameters and a total size of 34.21875 KB, the per-
formance of the network when trained on the development
set is reported as ”Res Dec.” in Table 2.

• Submission 2: CP ResNet RF-Damp Gate Prune
We apply the adaptive pruning on a frequency damped
Resnet (Section 3.2) (ρ = 4) as explained in Section 5.1.2.
We prune only the weights of 1×1 convolutional layers. The
network has in total 345990 parameters including 77824 pa-
rameters of the 1× 1 convolutional and the same number of
parameters for the pruning mask weights. After training and
adaptive pruning the network the total number of non-zero

Model # NZ/Total Size (KB) Acc.

CP-Res [2, 3] 3415K/3431K 6671.5 0.9685
CP-Res Damp. 3415K/3431K 6671.5 0.9761
CP-Res Damp.-R 224K/227K 437.8 0.9709
CP-Res Damp.-GP 247K/345K 483.5 0.9737
CP-Res Dec. 17.5K/18.3K 34.2 0.9583
CP-Res Damp.-Dec. 17.5K/18.3K 34.2 0.9595

Table 2: Comparison of our parameter reduction methods to two
baseline architectures on the DCASE‘20 Development Test-Split.
We report the accuracy (Acc.) over all classes, the number of non-
zero (NZ) parameters (without batch normalization), the total num-
ber of parameters as well as the size of the model in KB. Note that
we use half-precision (Float16) for the calculation of the model size.
Res Damp. refers to a ResNet with frequency-damping as intro-
duced in Section 3.2, Res Damp.-R is a frequency-damped ResNet
with width and depth restriction (cf. Section 5.1.1, Res Damp.-GP
is a frequency-damped ResNet in combination with gate pruning
(cf. Section 5.1.2) and Res Dec. is a ResNet where all convolutions
are replaced with decomposed convolution and a compression fac-
tor Z = 4 (cf. Section 5.1.3). The table shows the mean of the
accuracy of the last 10 epochs for each model.

parameters adds up to 247562 with a total size of 483.520
KB

• Submission 3: CP ResNet RF-Damp small width/depth
We reduce the width and depth of the basis network so that it
fits within the size limit. The resulting network has 242592
parameters and a size of 473.813 KB

• Submission 4: CP ResNet ensemble of smaller models
In this submission we average 3 smaller models so that their
total size fits in the size limit with 249386 parameters and
487.082 KB . The three models are as follows: a) A damped
ResNet with decomposed weights and adaptive pruning with
a total number of non-zero parameters of 87168. b) A re-
stricted ResNet with 100288 parameters. c) A ResNet with
adaptive pruning with a total number of non-zero parameters
of 61930.

6. CONCLUSION

In this technical report, we detailed our approaches to tackle Task
1A and 1B of the DCASE-2020 challenge. We showed that by
adding a further limitation on the effective receptive field in the
form of frequency-damping, we improve the accuracy of our RF-
regularized baseline ResNet. Additionally, we investigated several
approaches to reduce the number of parameters in our models. Our
results suggest that we can design networks with only 1% of the pa-
rameters of a reference model without a severe performance degra-
dation.
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