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ABSTRACT
In this technical report, we describe the details of the system sub-
mitted to DCASE2020 task4: sound event detection (SED) and sep-
aration in domestic environments. We mainly focus on the scenario
that recognizes sound events without source separation. The train-
ing set includes synthetic strongly labeled data, weakly labeled data
and unlabeled data. For training SED models with weak labeling,
a power pooling function is introduced to generate clip-level pre-
dictions from frame-level ones. Additionally, three traditional data
augmentation approaches are applied on all data. We also ensemble
models with different strategies. Our best system finally achieves
an F1 of 49.55% on the validation set.

Index Terms— DCASE2020, sound event detection, power
pooling, data augmentation

1. INTRODUCTION

DCASE2020 task4 is an extension of DCASE2018 task4 and D-
CASE2019 task4. All Task4 challenges pay attention to semi-
supervised sound event detection (SED) in domestic environ-
ments. DCASE2018 task4 takes only weakly labeled data (with-
out timesteps) and unlabeled data as training data. DCASE2019
task4 adds synthetic strongly labeled data and discuss the necessity
of this behaviour. DCASE2020 task4 encourages to detect sound
events jointly with sound separation, and divides the task into three
scenarios:

1.Train a SED system without source separation pre-
processing.

2.Use a source separation algorithm together with SED.
3.Work only on source separation and use the baseline SED

system.
The last two scenarios aim to investigate the improvement of

SED systems with source separation. Another scientific question
that this task concerns is how to optimally exploit synthetic data.
Please refer [1] for other detailed information about the challenge.

This technical report focuses on the first scenario and mainly
makes two contributions. Firstly, to exploit synthetic data, we apply
various traditional data augmentation methods on the training data.
Some of them show positive impact on DCASE2020 task4. Second-
ly, SED with weak labeling is treated as multiple instance learning
(MIL) problem. Because an event happens in a clip if and only if
the event actives in at least one frame. The strong (frame-level) pre-
dictions need to be aggregated with a pooling function to produce
weak (clip-level) ones of each clip. A power pooling function [2] is
introduced and illustrates a good performance.

2. PROPOSED METHODS

In this section, we describe our systems in 6 parts. Our systems are
modified based on the mean teacher model for DCASE2018 task4
[3].

2.1. Data augmentation

Four different audio data augmentations (deformations) are applied
on all training dataset [4]. Each deformation was performed directly
to the audio signal before feature extraction. The deformations and
resulting augmentation sets are described below:

1.Audio time stretching (ATS): slow down or speed up the au-
dio sample while keeping the pitch unchanged. We experimented
with two strategies: (1) each sample was time stretched by 2 fac-
tors: 0.8, 1.2. (2) each sample was time stretched by a factor which
was sampled uniform from 0.8 to 1.2. Both methods failed to im-
prove the performance of our systems. The reason might be that the
variety of the event length resulted in mismatching with the window
sizes of the median filter computed from official synthetic data.

2.Audio pitch shifting (APS): raise or lower the pitch of the
sample while keeping the duration unchanged. We experimented
with two strategies: (1) each sample was pitch shifted by 2 values
(in semitones): +2, -2. (2) each sample was pitch shifted by a value
which is sampled uniform from -2 to +2. The results showed that
the former strategy (fixed pitch shift) is more effective.

3.Audio time rolling (ATR): shift the time of the sample while
keeping the duration and pitch unchanged, also called audio time
shifting. Each sample was time rolled by a parameter which was a
product of the audio duration and a factor. The factor was chosen
randomly from 0.1 to 0.9.

4.Dynamic range compression (DRC): compress the dynamic
range of the sample using the parameter speech taken from the Dol-
by E standard [5]. Consider that the speech events account for the
highest proportion of the datasets.

Some of the deformations (APS, ATS, DRC) are performed us-
ing the MUDA toolkit [6].

2.2. Audio preprocessing

The sampling rate of clips is 44100 Hz. We resampled the clips
at 16,000 HZ, and converted multi-channel ones to single-channel.
The 128-dimensional log mel-spectrogram was extracted by 743-
window and 132-hop at each frame. The 10-second audio clips
should be convert to a 1209-frames float data as the feature.
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Table 1: The clip-level and frame-level gradient direction of linear
pooling. yf and yc are frame-level and clip-level predictions.

Label Clip-level Condition Frame-level
positive (t = 1) yc → 1 yf > yc/2 yf → 1

yf < yc/2 yf → 0
negative (t = 0) yc → 0 yf > yc/2 yf → yc/2

yf < yc/2 yf → yc/2

2.3. Model architecture

Our SED model was modified based on the structure proposed in
[3]. The log mel-spectrogram was fed to a mean teacher [7] mod-
el. Teacher and student model share the same structure of CRN-
N. The weights of the student model are updated with gradient
descent, and the teacher model weights are updated as an expo-
nential moving average (EMA) of the student weights. The CRN-
N model consists of 7 2-D convolutional blocks, 2 bi-directional
gated recurrent units (BiGRU) and 1 dense layer. The number
of filters and pooling sizes are [16,32,64,128,128,128,128] and
[[2,2],[2,2],[1,2],[1,2],[1,2],[1,2],[1,2]] respectively . Context Gat-
ing (CG) [8], Gated Linear Units (GLU) [9] are used as the activa-
tion in different models. The training epoch was set to 200.

2.4. Pooling function

A power pooling was adopted to produce clip-level predictions from
frame-level ones. Linear pooling function [10], whose formula and
gradient can be written as:

yc =

∑
i yf (i)× yf (i)∑

i yf (i)
, (1)

∂yc
∂yf (i)

=
2yf (i)− yc∑

j yf (j)
, (2)

has been confirmed to work best among classic five pooling func-
tions for frame-level classification [11], since the clip-level and
frame-level gradient directions change as Table 1. For positive
recordings (t = 1), linear pooling function leads larger yf to be
boosted.

Limited by the form of linear function, the threshold of larger
yf is defined as yc/2. However, the threshold is supposed to be
adjusted dynamically according to the value of yc and the number
of positive frame-level samples. This issue can be addressed by
applying a power pooling function:

yc =

∑
i yf (i)× y

n
f (i)∑

i y
n
f (i)

, (3)

and the gradient can be written as:

∂yc
∂yf (i)

=
(n+ 1)× ynf (i)− n× yn−1

f (i)× yc∑
j y

n
f (j)

. (4)

Treating n as a free parameter to be learned along-side the model
parameters allows eq.(3) to automatically adapt to and interpolate
between separate pooling functions. For instance, when n = 0,
eq.(3) reduces to mean pooling. When n = 1, eq.(3) simplifies to
linear pooling. When n→∞, eq.(3) approaches the max aggrega-
tion.

Table 2: The amount of events, mean durations (in s), median dura-
tions (in s) and window sizes of the median filter (in s) for synthetic
data.

Class Amout Mean Median Window sizes
Vacuum cleaner 342 5.84 6.04 2.92

Frying 201 5.56 5.51 2.82
Electric shaver toothbrush 334 4.64 4.21 2.24

Running water 271 4.08 3.65 1.98
Blender 414 2.52 1.51 1.20
Speech 2625 1.13 0.90 0.49

Cat 783 1.10 0.88 0.48
Alarm bell ringing 532 1.01 0.33 0.21

Dog 858 0.91 0.45 0.26
Dishes 1115 0.57 0.41 0.20

total segments 7475 / / /

2.5. Median filter

We used an adaptive post-processing [12] where the window size of
median filters for each event category c is obtained with the formula

Winc = durationc × βc, (5)

For some event categories such as Alarm/bell/rining, the variance
of the duration is large. Therefore, we adopted the median duration
instead of mean duration of each sound event class as durationc. β
firstly took 0.55. Then, we adjusted the window sizes manually. The
amount of events, mean durations, median durations and window
sizes of the median filter for synthetic data are in Table 2.

2.6. System fusion

We fuse the posteriors (after median filter) of models with different
activation (CG and GLU) and data augmentations. The final re-
sults are generated from the weighted-average predictions of single
models. A grid search is utilized to determine a group of optimal
weights for various event classes.

3. EXPERIMENTS

In this section, we first describe the information about the dataset of
DCASE2020 task4. Then, the results of our systems are shown.

3.1. Dataset

The DCASE2020 task4 dataset can be divided into four subsets, in-
cluding training sets (synthetic strongly labeled: 2,595 clips, weak-
ly labeled: 1,578 clips, unlabeled: 14,412 clips) and validation set
(1,168 clips). The duration of majority audio clips is 10 seconds,
and multiple audio events may occur at the same time. We com-
bined the original data with the beneficial augmented data respec-
tively to produce 3 new datasets.

3.2. Results

According to the data augmentations and activation, 6 single sys-
tems are trained. The F1 scores of these systems are illustrated in
Table 3.

Our 4 submissions are the fusion of above 6 models. The en-
semble strategy is as follows:

System1 (S1): the result is the weighted-average of the results
generated from model Maps cg , Matr cg and Mdrc cg .
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Table 3: The event-based F1 (%) of 6 single models.

Model F1
Mean-Teacher-APS-CG (Maps cg) 42.98
Mean-Teacher-ATR-CG (Matr cg) 41.89
Mean-Teacher-DRC-CG (Mdrc cg) 41.38

Mean-Teacher-APS-GLU (Maps glu) 36.35
Mean-Teacher-ATR-GLU (Matr glu) 38.12
Mean-Teacher-DRC-GLU (Mdrc glu) 39.19

Table 4: The event-based F1 (%) of submitted four systems.
Class/Model S1 S2 S3 S4

Vacuum cleaner 67.52 72.29 56.98 67.06
Frying 54.02 54.02 51.65 51.93

Electric shaver toothbrush 47.27 58.57 48.28 52.86
Running water 39.55 39.55 33.60 37.04

Blender 54.02 54.02 49.69 52.22
Speech 58.42 58.66 57.85 58.74

Cat 45.57 50.27 47.31 46.32
Alarm bell ringing 54.10 54.10 47.15 50.31

Dog 26.46 27.06 26.20 25.95
Dishes 26.97 26.97 24.37 25.93
total 47.39 49.55 44.31 46.84

System2 (S2) and System3 (S3): These two results are the
weighted-average of the results of all 6 models. Different weights
are applied in two systems.

System4 (S4): The result is the average of results of S2 and S3.
Table 4 shows the F1 scores of submitted models. Also, the re-

sult for each sound event class is available. The performance reach-
es 47.39%, 49.55%, 44.31%, 46.84%, which significantly improves
the official baseline (34.8%) [13]. Besides, it is noted that the result-
s of shortest two sound events (Dog, Dishes) are consistently low.
This issue may address if the parameter β in 5 is relatively smaller
for the two events.

4. CONCLUSION

In this technical report, we propose a modified mean teacher mod-
el for DCASE2020 task4. After applying three data augmentation
methods, the power pooling function and various ensemble strate-
gies, our best system achieves an F1 of 49.55% on the validation
dataset of DCASE2020 task4.
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