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ABSTRACT

We discuss our unsupervised speaker-recognition-based submission
to the DCASE 2020 Challenge Task 2. We found that a speaker-
recognition approach enables the use of all the training data, even
from different machine types, to detect anomalies in specific ma-
chines. Using this approach, we obtained AUCs close to, or greater
than, 0.9 for 5 out of 6 machines. We also discuss the modifications
needed to surpass the baseline score for the ToyConveyor data.

Index Terms— DCASE, anomaly detection, anomalous
sounds, machine condition monitoring, machine health monitoring,
speaker recognition.

1. INTRODUCTION

The DCASE 2020 Challenge Task 2 is concerned with identifying
anomalous behavior from a target machine using sound recordings
[1]. A major difference between this task and other DCASE tasks
is that it is not supervised. Accordingly, the available training data
only contains samples from the normal-state distributions.

In our submission, we used the data provided from the “de-
velopment” and “additional” datasets [2, 3]. Although these data
do not contain abnormal samples, they do contain other informa-
tion – they contain the machine type and ID number. We leveraged
this information to train a deep neural network (DNN) to identify
which machine ID an input sample belongs to, similar to speaker-
recognition approaches.

The DNN architecture used here is composed of a (Mel or
STFT) spectrogram layer, followed by a 2D CNN encoder, followed
(optionally) by stats-pooling layers, and capped with either a fully-
connected (FC) or added margin softmax (AMS) layer [4]. We em-
ploy two scoring methods and take the best one for a given machine
type.

2. METHODOLOGY

In this section we detail our implementation, DNN training strategy,
and scoring methods.

Fan Pump Slider Valve ToyCar ToyConv
STFT MEL MEL MEL MEL MEL

encoder encoder encoder encoder encoder encoder
stats pool stats pool stats pool stats pool stats pool FC

AMS AMS AMS AMS AMS

Table 1: High-level Architecture

2.1. Data Processing

The DCASE 2020 Task 2 dataset consists of 10s audio files that
include the sound of the target machine and environmental noise.
There are six types of machine categories. ToyCar and ToyCon-
veyor are from the ToyADMOS dataset [5]. Valve, Pump, Fan, and
Slider are from the MIMII dataset [6]. Within each machine cate-
gory there are a number of machine IDs, for a total of 41 possible
sound categories. The interested reader is referred to the dataset
references for details on the recording procedures. However, all the
audio files contain a single-channel and use a 16kHz sampling rate.

For spectral features, we used the package nnAudio to trans-
form input audio into either a Mel or STFT spectrogram [7]. The
optimal spectrogram settings varied with machine type. We provide
these settings in Section 3.

2.2. Network Architectures

A high-level description of the architectures can be found in Table
1. All architectures utilized the 2D CNN encoder shown in Table
2. The encoder utilizes progressively smaller kernel sizes and ends
with a max pool layer. The stats pooling was performed using a
variant of the Xvector from [8] discussed in [4]. Table 3 shows the
details of the variant used here.

Except for ToyConveyor, which used a simple fully-connected
layer as the final layer, the other models used the additive margin
softmax layer discussed in [4].

2.3. Training Strategy

All the models use the same training strategy, except for the Toy-
Conveyor model which we discuss separately. At training time, a
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Layer Input Output Kernel Stride
conv 2D 1 64 7x7 1x1

batchnorm 2D 64 64
relu 64 64

conv 2D 64 32 5x5 1x1
relu 32 32

conv 2D 32 6 3x3 1x1
max pool 6 6 2x2 2x2

relu 6 6

Table 2: Encoder

Layer Input Output Kernel Stride
batchnorm 1D 348

conv 1D 348 348 3x3 1x1
relu 348 348

batchnorm1D 348
conv 1D 348 348 3x3 1x1

relu 64 64
batchnorm 1D 348

conv 1D 348 348 1x1 1x1
relu 348 348

batchnorm 1D 348
conv 1D 348 1500 1x1 1x1

batchnorm 1D 3000
fully connected 3000 128

dropout(0.1)

Table 3: Xvector Short

contiguous 10/7 second clip was randomly sampled from the train-
ing files. Batches of 64-128 such samples were used during each
epoch, for between 100 and 200 epochs to ensure all the data are
sampled.

At the output of the spectrogram layer, before inputting to the
encoder, we subtracted the column-wise mean, and divided by the
column-wise standard deviation, of all the training spectrograms of
the same machine type.

We used a different strategy to obtain the best result from the
ToyConveyor data. We divided each 10s sample into 7 parts and
used the 7 parts as a batch. Thus, each batch was composed of data
from the same ToyConveyor machine ID1. With a probability 1/2,
we simulated anomalies by corrupting 1 of the 7 parts by linearly
combining the part spectrogram with a spectrogram from another
ToyConveyor machine ID according to (1).

Si = λSj + (1− λ)Si (1)

where Si is the spectrogram of ToyConveyor ID i and i 6= j. In
contrast to the so-called mix-up data augmentation method, we did
not randomly select λ – we fixed λ to 0.03 and randomly selected
the machine ID j. Selecting a larger λ resulted in the model (too)
easily identifying the anomaly, leading to overfitting.

For all models, we used a categorical cross-entropy loss func-
tion with l1 regularization on the encoder weights and the Adamax
optimizer with the default learning rate.

1In contrast to other models, the output of the ToyConveyor anomaly
detector only has 7 classes, one for each ToyConv. ID and 1 Other class.

2.4. Scoring

We used two scoring methods. The first is simply 1 minus the soft-
max probability of the specific machine ID. Clearly, if the model
is certain a sample belongs to machine ID i, the ith output will be
close to 1, resulting in a lower anomaly score. Conversely, as the
uncertainty increases, so will the anomaly score. In the ToyCon-
veyor case, since the model output categories also include an Other
class, we add this softmax probability to the anomaly score as well.

The second scoring method is the cosine distance between the
average normal embedding2, recorded at training time, and the em-
bedding of the test sample computed at test time. Generally, the
two scoring methods did not produce very different scores. How-
ever, we selected the scoring method that produced the best AUC +
pAUC.

3. RESULTS

We summarize the results of our work in Table 4. Using our ap-
proach, the ToyConveyor case proved the most difficult, followed
by Fan. The Slider and Valve were the easiest to obtain good results
for, followed by ToyCar and Pump.

Fan Pump Slider Valve ToyCar ToyConv
batch size 64 64 64 128 64 7
no. Mels 128 256 128 128 128 128
no. FFT 1024 1024 1024 1024 1024 1024

hop 512 80 80 512 80 512
fmin 1 100 10 0 10 0
fmax 4000 7700 7700 8000 4000 4000

scoring cos dist. cos dist. cos dist. softmax softmax softmax
AUC 0.8823 0.9321 0.9997 0.9989 0.9573 0.7417
pAUC 0.8057 0.8619 0.9982 0.9941 0.9032 0.6586

Table 4: Scoring Results

4. CONCLUSIONS

We have outlined our speaker-recognition approach to the DCASE
2020 Challenge Task 2 which uses the machine IDs themselves
to make an unsupervised problem supervised. It is our intuition
that this approach succeeded because the spectral content of these
machines is sufficiently similar to make the task of separating the
machine IDs challenging. This was less so for the Toy- classes,
especially for ToyConveyor. For example, in one experiment we
classified the ToyConveyor IDs and used data from the remaining
machines as Other, during training both the training and validation
accuracies quickly exceeded 99%. This led us to look to data aug-
mentation methods for ToyConveyor, as described in Section 2.3.
Consequently, we expect that this approach may not work in cases
where the spectral content of the machine sounds differs greatly.
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