
Detection and Classification of Acoustic Scenes and Events 2020 Challenge

LOW-COMPLEXITY ACOUSTIC SCENE CLASSIFICATION USING ONE-BIT-PER-WEIGHT
DEEP CONVOLUTIONAL NEURAL NETWORKS

Technical Report

Mark D. McDonnell

Computational Learning Systems Laboratory,
UniSA STEM,

University of South Australia, Mawson Lakes SA 5095, Australia

ABSTRACT

This technical report describes a submission to Task 1b (“Low-
Complexity Acoustic Scene Classification”) in the DCASE2020
Acoustic Scene Challenge. Solutions for this task were required
to be constrained to have parameters totalling no more than 500
KB. The strategy described in this report was to train a deep con-
volutional neural network applied to spectrograms formed from
the acoustic scene files, such that each convolutional weight was
set to one of two values following training, and hence could be
stored using a single bit. This strategy allowed a single 36-
layer all-convolutional deep neural network to be trained, consist-
ing of a total of 3,987,000 binary weights, totalling 486.69KB.
The model achieved a macro-average accuracy (balanced accuracy
score) across the three classes of 96.6±0.5% on the 2020 DCASE
Task 1b validation set.

Index Terms— acoustic scene classification; one-bit-per-
weight; deep residual network; log-mel spectrograms

1. INTRODUCTION

Task 1 in the DCASE2020 IEEE AASP Challenge on Detection
and Classification of Acoustic Scenes and Events required entrants
to design classifiers that predicted the scene label of ten-second
recordings. The setup was similar to that in 2018 [1] and 2019.
Models were to be trained and validated using a development set,
and tested and evaluated on an evaluation set.

Task 1 was divided into two subtasks. This technical report is
relevant only to Task 1b: “Low-Complexity Acoustic Scene Classi-
fication.” This task requires classification of audio scenes into three
classes: indoor, outdoor and transportation. Models are constrained
such that “Classifier complexity for this setup is limited to 500KB
size for the non-zero parameters.” The 500KB constraint excludes
any deep neural network batch normalization layer parameters used,
and an parameters used for feature extraction.

Python code using tensorflow.keras for train-
ing our models and running trained models is at
https://github.com/McDonnell-Lab/DCASE2020 Task1b.

We did not use any data other than the 40 hours comprised from
14400 ten-second (24 bit, 48 KHz) stereo recordings provided by
the challenge organizers.

2. STRATEGY

Highest accuracy in previous approaches to scene classification
have arisen from treating spectrograms of acoustic scenes as though
they are images, and training deep Convolutional Neural Networks
(CNNs) on these spectrograms using best practice image classifica-
tion methods, e.g. [2, 3, 4]. We also adopt the use of a CNN applied
to spectrograms.

Past DCASE Challenges (and other machine learning contests)
tend to be won by ensembles combined using either simple averag-
ing, or by meta-learning approaches involving stacking. We did not
concentrate our efforts on this aspect, instead preferring to seek the
best (and largest within the 500 KB constraint) single network we
could.

2.1. One-bit-per-weight CNNs

Past CNNs for acoustic scene classification, such as that reported
in [4], have used in the order of 1–10 million convolutional weights,
which by default are represented using 32 bit floating point preci-
sion. For example. a model with 4 million weights and 32 bits
per weight would total 15,625 KB. Meeting the 500 KB constraint
would allow for only in the order of 125,000 parameters, which is a
very small deep CNN.

To enable a typical size of deep CNN, we therefore limit the
number of bits per weight, when stored on disk, to just a single
bit. Doing this permitted us to design a CNN that otherwise closely
resembled a good unconstrained design for this dataset, i.e. one
with 36 convolutional layers and a total of 3,987,000 convolutional
weights.

The technique we used to enable the storage of weights with a
single bit was precisely that described in our previous work [5, 6].
The following paragraph and Figure 1 are quoted from [5]:

“...the only differences we make in comparison with full-
precision training are as follows. Let Wi be the tensor for the con-
volutional weights in the i–th convolutional layer. These weights
are processed in the following way only for forward propagation
and backward propagation, not for weight updates:

Ŵi =

√
2

F 2
i Ci−1

sign (Wi) , i = 1, . . . , L, (1)

where Fi is the spatial size of the convolutional kernel in layer i...”
and Ci is the number of input channels to a layer.

It needs to be emphasised that this change applies only for prop-
agation through layers (forwards and backwards during training,



Detection and Classification of Acoustic Scenes and Events 2020 Challenge

BN,ReLU, conv

1-bit weights:
Full precision:

BN,ReLU, 1 bit conv, scale

Figure 1: Difference between our full-precision and 1-bit-per-
weight networks. The “1 bit conv” and “scale” layers are equiva-
lent to the operations shown in Eqn. (1). [Figure from from [5]]

and forwards for inference). During training, weight updates are
made using float32 weight tensors. These are discarded for infer-
ence, and during inference, a sign operation need not be applied if
weights are already binarized (which is how there are intended to
be for stored on disk). The scaling factors can be considered as a
part of the model itself rather than as parameters, since their values
depend only on the number of input channels to a layer, and the size
of a layer’s kernel.

Our keras implementation for training using one-bit-per-
weight convolutions can be observed in our repository at
https://github.com/McDonnell-Lab/1-bit-per-weight
– see class BinaryConv2D in ResNetModel.py.
This is repeated in our challenge repository at
https://github.com/McDonnell-Lab/DCASE2020 Task1b.

2.2. Class balancing minibatch sampling strategy

We noticed that the development data did not contain equal class
counts; indoor and transportation had 4320 samples while outdoor
had 5760 (for the offical training split, this reduced to 2704 indoor,
3754 outdoor and 2724 transportation). Although this is not badly
imbalanced, we decided to implement a form of class balancing as
follows.

Training was subdivided into epochs, such that in each epoch
the total number of samples used was equal to 3×mini(Ni), where
Ni is the number of samples in the i–th class. Each sample from
the minority class was used once in each epoch, and the remaining
samples were chosen as a random subset from each class at the start
of each epoch. Given our use of mixup augmentation, where each
sample fed to the neural network is comprised from two training set
samples, the number of samples fed to the neural network in one
epoch was 1.5×mini(Ni).

As we used relatively small minibatches (32 samples), we also
tried to ensure a minibatch was as balanced as possible. At the start
of each epoch we randomly shuffled within each class the indices
of the samples chosen for that class for the epoch. We then created
minibatches in a sequence of 3 samples at a time, such that one
sample was taken in a random order from each class.

We found in validation that this class balancing approach in-
creased our accuracy by about 2 percent. We found the use of class
weightings in the loss function or at inference time were unable to
achieve the same accuracy as the use of this class balancing method.

2.3. Acoustic feature extraction

Past entries into DCASE challenges have used a range of ap-
proaches to forming image-like spectrograms for CNN process-
ing. These have included log-mel spectrograms, MFCCs, percep-
tual weighted power spectrograms, CQT spectrograms and so forth.

We used only log-mel spectrograms, calculated for both left and
right channels, so that the input to our CNN had 2 channels.

2.4. CNN design

As in our past work [4], we note that spectrograms have charac-
teristics different from optical images [7]. For example, one object
placed behind another is entirely occluded in a photograph, whereas
sounds from two sources superimpose such that frequency features
in a spectrogram can arise from a combination of the two sources.
Another important difference is that an object can appear anywhere
in an image, and carry the same meaning, whereas patterns of fea-
tures at low frequencies may represent different physical origins
from those at higher frequencies. Consequently the time and fre-
quency axes that comprise the two axes of a spectrogram are not
of the same nature as the two spatial axes in an image. Thirdly,
frequency features at any point in time can be non-local, due, for
example, to harmonics.

The second and third point leads us to use a CNN in which the
frequency and time axes are treated differently. The main deviations
from a standard deep CNNs are described in Section 3.

While we have not observed generalizable improvements using
this split, we have observed much faster training, and accuracy at
least as good as networks without a split.

2.5. Aggressive regularization and data augmentation

We found significant levels of overfitting, i.e. the training loss and
error rate for our trained models applied to the training set were
close to zero for sufficiently large models. Therefore, we used sev-
eral forms of regularization and data augmentation.

Like many entries in previous DCASE challenges, we used
mixup augmentation [8], and like most deep CNNs for image clas-
sification, we used weight decay for all convolutional layers. We
also experimented with shift-and-crop augmentation, but found best
results when only relatively mild temporal cropping was used. Fi-
nally, we made use of a new approach from image classification
which is not in common practice, which was to add a form of regu-
larization where batch normalization layers did not have their offset
and scale parameters learned [5].

Coupled with using these approaches, we found it helpful to
train for a very large number of epochs (we used 310) in a warm-
restart learning-rate schedule [9].

3. METHODS

All networks were trained using tensorflow.keras (version 2.2.4-tf),
which is an integrated component of tensorflow (we used version
1.13.0).

3.1. Acoustic file preprocessing

To calculate our log-mel energies, we used 4096 FFT points, the
original sampling rate of the acoustic files (48 KHz), frequencies
from 0 to half of the sampling rate, a hop-length of 1024 (a quarter
of the number of FFT points), and the HTK formula to define the
mel scale [10]. Our implementation used python, and the LibROSA
library1. Our resulting spectrograms were of size 469 time samples,
and 256 frequency bins. Thus, the total size of the input tensor used
for training our final model was [14400, 256, 469, 2].

1https://librosa.github.io/librosa/



Detection and Classification of Acoustic Scenes and Events 2020 Challenge

To avoid the need to recalculate spectrograms for every experi-
ment, we created them once and saved to and load from disk.

3.2. Splitting of high and low frequencies

The CNN we designed is a residual network pre-activation vari-
ety [11]. It has two mostly parallel paths that combine only using
late fusion by addition of frequency axes (unlike the concatenation
of [4]), two convolutional layers before the network output. The
overall network input has 256 frequency dimensions, but these are
immediately split in the network such that frequency dimensions 0
to 125 are processed by a residual network with 17 convolutional
layers and frequency dimensions 128 to 256 by another. All ker-
nels in these paths are 3 × 3. After these stacks, the two pathways
are added and then operated on by a 3 × 3 convolutional layer and
then a 1×1 convolutional layer. The second of these layers reduces
the number of channels to the number of classes, i.e. three. This is
followed by a batch normalization layer, a global average pooling
layer, and softmax.

See [4] for further discussion of this design.

3.3. No downsampling in frequency layers

The input to our network for training has 400 time samples (due to
random temporal cropping—see below) and 256 frequencies. Due
to the all-convolutional nature of the network, at inference time we
can use larger number of time samples, and use all 469 samples
provided by our audio preprocessing.

In order to ensure the CNN can learn global temporal informa-
tion across all time samples, we use standard image classification
practise of regularly downsampling in time using stride 2 convolu-
tional layers. The principle is that an important cue could happen
with equal likelihood at any point in time in a 10 second sample,
just like objects in images can appear in any spatial location.

However, in the frequency axis we do not downsample. Conse-
quently, the number of frequency dimensions in the feature maps for
each path remains constant at 128 throughout the network. Hence,
at the point where the two branches are added, each path has pro-
cessed a frequency-axis receptive field of 35 dimensions.

Consequently, the global average pooling layer does not merge
equal global “views” in the frequency axis, but instead averages
over different overlapping views spanning 35 dimensions, rather
than global views.

3.4. Other CNN design aspects

Our CNN is of the residual network pre-activation variety [11],
which means it has the input to each convolutional layer first pro-
cessed by a batch normalization layer and then a ReLU activation.
In the residual paths, when the number of channels needs to be in-
creased before summation of different paths, we used zero padding
in the channel dimension as in [5], rather than 1× 1 convolutions.

Using a technique introduced in [5], the very first layer of our
network was a batch normalization layer with learned offset and
scale parameters. This enabled us to avoid assumed forms of nor-
malization of the features passed into the network.

3.5. Regularization and data augmentation

We used the following:

• weight decay: we used an aggressively large value of 2.5 ×
10−4 (i.e. 5 × 10−4 when set in keras) on all convolutional
layers.

• Not learning batch normalization scale and offset: it was
shown in [5] that for datasets and networks with significant
overfitting, disabling the learning of batch normalization scale
and offset (except in the very first layer) has a regularization
effect resulting in improved test error rates on the CIFAR-
100 benchmark. We used this approach here for all batch-
normalization layers except at the input and the final batch
normalization layer prior to the output. We decided to enable
learning at the output, as part of our class balancing strategy.

• Mixup and temporal crop augmentation: As found by oth-
ers in past DCASE challenges, we found it very useful to use
mixup augmentation, using the same approach as [2], with
α = 0.4. We additionally used crop augmentation in the tem-
poral axis: each of the two samples combined using mixup
were first cropped independently and randomly from 469 di-
mensions down to 400.

• Channel swapping: We found about 0.5% improvement on
the official DCASE2020 development set validation split if,
during training, we randomly switched the left and right chan-
nels for each use of a sample, and then at inference averaged
the raw predictions from each of the two possible channel ori-
entations.

3.6. Training

We trained using backpropagation and stochastic gradient descent,
with a minibatch size of 32, momentum of 0.9, and the categori-
cal cross-entropy loss function. Each network was trained for 310
epochs using a warm restart learning rate schedule that resets the
learning rate to its maximum value of 0.025 after 10, 30, 70 and 150
epochs, and then decays according to a cosine pattern to 2.5×10−6.
It was shown by [9] and verified by [5] that this approach can pro-
vide improvements in accuracy on image classification relative to
using stepped schedules.

3.7. Inference

At inference time, we used a low-complexity method of running the
trained CNN only twice (once for each possible channel orienta-
tion), each time on the entire 469 sample spectrograms, and aver-
aged the results, before finding the class with maximum response.

3.8. Validation

We noted that the evaluation dataset for this challenge includes two
cities for which no data is provided during training. In order to
try and design a model that generalised best to new cities, we used
“leave-one-city-out’ (LOCO) cross-validation during development
of our system. As there were 10 cities in the training set, this meant
for each model design that we needed to train and validation 10
different models. Each such model was trained on 9 of the cities,
and validated on the ‘left-out’ city. We made decisions on many
aspects of the design based on whether average accuracy across the
9 LOCO models increased or decreased.

An official train/validation split of the DCASE development
data was provided for Task 1b, roughly in a 70:30 ratio. We fi-
nalised the design and selected model selection using this split, and



Detection and Classification of Acoustic Scenes and Events 2020 Challenge

then retrained our model using the entirety of the development data
before running the models on the evaluation data for submission.

4. RESULTS

Our best results on the official contest validation splits of the Task
1b development set are shown in Table 1, with a confusion matrix
shown in Figure 2. Note that for individual classes in this table, ‘ac-
curacy’ means ‘recall’ (equivalently, ‘sensitivity’). But for overall,
accuracy is the total number correct divided by the total number of
samples, rather than average recall.

Table 1: Results for Task 1b on official development validation split
of 4185 samples.

Data Accuracy Log Loss

indoor 94.7% 0.149
outdoor 97.8% 0.082

transportation 98.9% 0.054
Overall 97.1% 0.094

ind
oo
r

ou
tdo
or

tra
nsp
ort
ati
on

Predicted label

indoor

outdoor

transportation

Tr
ue
 la
be
l

1228 21 48

34 1569 1

14 0 1270

Confusion matrix, without normalization

0

200

400

600

800

1000

1200

1400

Figure 2: Task 1b validation set confusion matrix.

The DCASE200 Task 1b challenge is evaluated using accuracy
calculated as the average of the class-wise accuracy, also known as
‘balanced accuracy’ or ‘macro-average accuracy.’ Given the devel-
opment set validation split has unequal numbers within each class,
this means balanced accuracy is not exactly equal to the raw clas-
sification accuracy. However, we generally found both metrics to
usually give very similar numbers.

5. DISCUSSION

For each subtask, four submissions were permitted. We submit-
ted results for four independently trained versions of precisely the
same system. We made this choice because during validation we
observed larger-than-typical variability in validation performance
from independently runs. We hope that one of our four runs is at
the upper end of an accuracy spread in a window of about ± 0.5%,
and expect that at least one run will be above the mean.

We note that the class pair with least confusions during valida-
tion was ‘outdoor’ and ‘transportation.’ ‘Indoor’ had comparable
numbers of confusions with ‘outdoor’ and ‘transportation.’

In LOCO validation, Barcelona consistently achieved lowest
accuracy, while Paris tended to be highest.

6. REFERENCES

[1] A. Mesaros, T. Heittola, and T. Virtanen, “A multi-device
dataset for urban acoustic scene classification,” in Proceedings
of the Detection and Classification of Acoustic Scenes and
Events 2018 Workshop (DCASE2018), November 2018, pp.
9–13. [Online]. Available: https://arxiv.org/abs/1807.09840

[2] Y. Sakashita and M. Aono, “Acoustic scene classification by
ensemble of spectrograms based on adaptive temporal divi-
sions,” Tech. Rep., 2018, DCASE 2018 technical reports.

[3] M. Dorfer and G. Widmer, “Training general-purpose au-
dio tagging networks with noisy labels and iterative self-
verification,” in Proceedings of the Detection and Clas-
sification of Acoustic Scenes and Events 2018 Workshop
(DCASE2018), November 2018, pp. 178–182.

[4] M. D. McDonnell and W. Gao, “Acoustic scene classifica-
tion using deep residual networks with late fusion of sepa-
rated high and low frequency paths,” in ICASSP 2020 - 2020
IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), 2020, pp. 141–145.

[5] M. D. McDonnell, “Training wide residual networks for de-
ployment using a single bit for each weight,” 2018, in Proc.
ICLR 2018; arxiv: 1802.08530.

[6] M. D. McDonnell, H. Mostafa, R. Wang, and A. Schaik,
“Single-bit-per-weight deep convolutional neural networks
without batch-normalization layers for embedded systems,” in
2019 4th Asia-Pacific Conference on Intelligent Robot Systems
(ACIRS), 2019, pp. 197–204.

[7] D.Rothman, “What’s wrong with CNNs and spec-
trograms for audio processing?” Tech. Rep., 2018,
https://towardsdatascience.com/whats-wrong-with-
spectrograms-and-cnns-for-audio-processing-311377d7ccd.

[8] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,
“Mixup: Beyond empirical risk minimization,” in Interna-
tional Conference on Learning Representations, 2018.

[9] I. Loshchilov and F. Hutter, “SGDR: stochastic gradient
descent with restarts,” CoRR, vol. abs/1608.03983, 2016.
[Online]. Available: http://arxiv.org/abs/1608.03983

[10] S. J. Young, D. Kershaw, J. Odell, D. Ollason, V. Valtchev,
and P. Woodland, The HTK Book Version 3.4. Cambridge
University Press, 2006.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings
in deep residual networks,” Microsoft Research, Tech. Rep.,
2016, arxiv.1603.05027.


