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ABSTRACT

In this technical report, we describe our submission system for
DCASE2020 Task4: sound event detection and separation in do-
mestic environments. Our model employs conformer blocks, which
combine the self-attention and depth-wise convolution networks,
to efficiently capture the global and local context information of
an audio feature sequence. In addition to this novel architecture,
we further improve the performance by utilizing a mean teacher
semi-supervised learning technique, data augmentation, and post-
processing optimized for each sound event class. We demonstrate
that the proposed method achieves the event-based macro F1 score
of 50.7% on the validation set, significantly outperforming that of
the baseline score (34.8%).

Index Terms— Sound event detection, Conformer, Trans-
former, semi-supervised learning

1. INTRODUCTION

This technical report describes our submission system for
DCASE2020 Challenge Task4: sound event detection (SED) and
separation in domestic environments [1]. The goal of this task is to
build a system for the detection of sound events using real data ei-
ther weakly labeled or unlabeled and simulated data that is strongly
labeled (with timestamps). To address this task, we propose two
neural network models that utilize the self-attention mechanism;

• Transformer-based model [2], [3],
• Conformer-based model [4].

These models can efficiently capture both local and global context
information of an audio feature sequence through the stack of CNN
and self-attention layers. Besides, to further improve the perfor-
mance, we implement

• semi-supervised learning based on mean teacher [5],
• data augmentation techniques, such as time-shifting [6] and

mixup [7],
• post-processing refinement,
• posterior-level score fusion.

We conduct experimental evaluations on the DCASE2020 Task4

validation set to investigate the effectiveness of the proposed net-
work architecture and each of the implemented techniques. The
experimental results show that the proposed models significantly
outperform the baseline system, achieving the event-based macro
F1 score of 46.0% with the best single system and that of 50.7%
with the score fusion.

2. PROPOSED METHOD

2.1. Feature extraction

We extract 64-dimensional log-Mel filterbanks from the input au-
dio. The window size and the hop size are 1,024 points and 323
points, respectively, in 16 kHz sampling. We fix the length of the
feature sequence to 496 frames (corresponding to around 10 sec-
onds). To make the length of feature sequences the same, we per-
form zero-padding for shorter sequences and truncation for longer
sequences from their last frames. Then, we perform the normaliza-
tion to make the feature sequences have zero means and unit vari-
ances over the training data.

2.2. Network architecture

Inspired by the great success of the self-attention architectures in
various fields [2]–[4], [8], [9], we propose two neural network
models for SED; Transformer-based model and Conformer-based
model. The Transformer-based model consists of three modules; a
CNN-based feature extractor, Transformer blocks, and a position-
wise classifier [3]. The architecture of the CNN-based feature
extractor follows the baseline system of DCASE2020 Task4 [1],
which consists of three or seven convolution layers. To match with
the input size, we slightly modify the third and seventh average
pooling layers’ kernel size from (2, 2) to (1, 2) and from (1, 2)
to (1, 1), respectively. The Transformer block follows the archi-
tecture in [2], which consists of a multi-head self-attention layer, a
layer-normalization layer, and a linear layer with a rectified linear
unit (ReLU) activation function followed by another layer normal-
ization. The final position-wise classifier is a simple linear layer to
calculate the final outputs that correspond to the sound event types.

The Conformer-based model is the same architecture as the
Transformer model, except that the above Transformer block is re-
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placed with the Conformer block. The Conformer block consists of
two feed-forward modules that sandwich a multi-head self-attention
module and a convolution module. The feed-forward module con-
sists of a layer-normalization layer and a linear layer with a Swish
activation function [10] followed by another linear layer. The first
linear layer expands the dimension four times, and the second one
projects back to the original input dimension. After both the lin-
ear layers, we multiply 0.5 with the outputs by following the orig-
inal Conformer’s setting [4]. The convolution module consists of
a layer-normalization layer, a point-wise convolution layer with a
gated linear unit (GLU) activation function [11], and a 1D depth-
wise convolution layer. The depth-wise convolution layer is fol-
lowed by a batch normalization layer, a Swish activation, and a
point-wise convolution layer. We set a kernel size of the depth-wise
convolution to seven instead of following the original setting [4] due
to the shorter input feature sequence.

Additionally, we introduce a special tag token for the weakly
labeled training [3], making it possible to explicitly summarize the
sequence-level information through the self-attention layers, simi-
lar to the special classification token used in BERT [12]. We attach
the tag token as the first frame of the latent feature sequence trans-
formed through the CNN-based feature extractor. Therefore, the
network output corresponding to the first frame is used for the weak
label prediction, while those of the other frames are used for the
strong label prediction. The tag token is initialized with a uniform
distribution and it is updated through the training.

2.3. Semi-supervised learning

To further improve the performance, we employ the mean teacher
technique [5] as one of the typical semi-supervised training meth-
ods capable of using unlabeled data in training. We use a mean
square error function as the consistency criterion, and set the expo-
nential ramp-up steps [13] and the consistency cost to 10,000 and
2.0, respectively.

2.4. Data augmentation

For data augmentation, we employ time-shifting [6] and mixup [7].
The time-shifting shifts a feature sequence on the time axis, and
overrun frames are concatenated with the opposite side of the se-
quence. We randomly choose the shift size by sampling from a
normal distribution with a zero mean and a standard deviation of
90. The use of the time-shifting is helpful for preventing the net-
work from inappropriately learning the location information over
the sequence.

The mixup smoothes out the decision boundary by adding
pseudo data generated by mixing different data points (x1,x2) and
the corresponding labels (y1,y2). The mixup is formulated as fol-
lows;

x̄ = λx1 + (1− λ)x2, (1)
ȳ = λy1 + (1− λ)y2, (2)

where λ ∈ [0, 1] is the mixing ratio. In this study, we randomly
choose this value by sampling from a beta distribution with α =
0.2.

2.5. Post-processing

To determine the sound event activation, we perform thresholding
for the network output posterior. Then, we perform median filter-
ing as post-processing to smooth the detected activation sequence.

Since each sound event has different characteristics, such as tem-
poral structures, the optimal post-processing parameters depend on
the individual sound events. Hence, we determine the optimal post-
processing parameters for each sound event using the validation set.
We search the optimal threshold and median filter size from 0.1 to
0.9 in increments of 0.1, and from 1 to 31 in increments of 2, re-
spectively.

2.6. Score fusion

To improve generalization performance, we perform score fusion as
a model ensemble technique. We first average the raw posterior out-
puts of the multiple models with different training settings. Then,
we perform thresholding and apply post-processing, as mentioned
in Section 2.5.

3. EXPERIMENTAL EVALUATION

3.1. Experimental conditions

We conducted experimental evaluations using DCASE2020 Task4
dataset [1]. The dataset included 2,584 audio clips with a strong
label, 1578 audio clips with a weak label, and 14,412 unlabeled
audio clips. Since the audio clips were collected from YouTube, the
dataset included various audio clips with different recording settings
(e.g., 16 kHz sampling rate vs. 44.1 kHz sampling rate). To address
this issue, we first converted all of the audio clips to be 1 ch, 16 bit,
and 16 kHz sampling rate using sox [14]. We then normalized each
audio clip to be -3 dBFS and removed a direct current component
by applying a 10 Hz high-pass filter.

To verify the performance, we compared the following models:

Baseline: The DCASE2020 Task4 official baseline system [15].
The architecture was a convolutional recurrent neural net-
work (CRNN), and it was trained with the mean-teacher
semi-supervised learning technique [5]. We used the num-
bers provided in the official HP.

Transformer (Ours): The proposed Transformer-based model.
The number of attention units and that of the attention heads
were 512 and 16, respectively. The dropout rate was set to
0.1.

Conformer (Ours): The proposed Conformer-based model. The
number of attention units and that of the attention heads were
144 and 4, respectively. The kernel size of the depth-wise
convolution was 7. The dropout rate was set to 0.1. The
number of Conformer blocks was varied from 2 to 10.

We used RAdam [16] optimizer with a batch size of 128 and a learn-
ing rate of 0.001. We multiplied the learning rate by 0.1 every 10000
iteration and continued to train until 30,000 iterations. We used a
GPU (NVIDIA Titan pascal) to train the models. It took around 12
hours to finish the training. The detailed training condition is shown
in Table 1.

The evaluation metrics were the event-based macro F1 score
(EB-F1), the segment-based macro F1 score (SB-F1), and the poly-
phonic sound event detection score (PSDS) [17]. These metrics
were calculated using sed eval toolkit [18]. The segment length in
the segment-based evaluation was set to 1 second. The event-based
metrics were calculated using both the onset and offset of the detec-
tion. The allowable length of detection errors was set to 200 ms for
the onsets and 200 ms / 20 % of the event length for the offsets. We
computed PSDS using 50 thresholds from 0.01 to 0.99.
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Table 1: Network training configuration.

# of strong = 2,584
# of training samples # of weak = 1,578

# of unlabeled = 14,412

Batch size 128

# of iterations 30,000

Optimizer RAdam [16]

Learning rate 0.001

Consistency cost 2.0

Rampup steps 10,000

Table 2: Effects of model architectures.

Method EB-F1[%] SB-F1 [%]

Baseline 35.6 -
Transformer 41.0 69.3
Conformer 41.7 67.2

3.2. Experimental Results

3.2.1. Effects of model architecture

First, we investigated the effects of the model architecture. In a
comparison of the model architectures, we used the post-processing
and the mean teacher learning but we did not use the data augmenta-
tion for the proposed method. From the result shown in Table 2, we
can observe that both the proposed models outperform the baseline
even if we do not use data augmentation, revealing the effectiveness
of the self-attention architecture for SED.

Next, we investigated the effects of the number of Conformer
blocks. The result in Table 3 shows that the number of blocks affects
the performance and 4 was the best. We used this configuration in
the following experiments.

3.2.2. Effects of post-processing

Next, we investigated the effects of the post-processing. For the
model without post-processing, we fixed the threshold to 0.5 for all
sound event classes and did not apply the median filter. Table 4
shows the result with or without post-processing. From the result,
we can confirm that the post-processing improves the performance
especially on the event-based macro F1 score. This is because the
event-based metric is more sensitive to the deletion or insertion er-
rors than the segment-based metric.

3.2.3. Effects of data augmentation

Next, we investigated the effects of the data augmentation. Table 5
shows the result of the Conformer-based model with or without each
data augmentation method. The result shows that both time-shifting
and mixup improve the performance and that a combination of these
two methods yields further performance improvement.

Table 3: Effects of the number of Conformer blocks.

# of blocks EB-F1[%] SB-F1 [%]

2 39.39 65.91
3 40.29 67.03
4 41.30 67.17
5 38.47 66.18
6 39.44 67.14
7 39.44 66.29
8 38.18 64.96
9 37.82 65.90
10 36.49 65.10

Table 4: Effects of post-processing (p.p.).

Method EB-F1[%] SB-F1 [%]

Transformer w/o p.p. 28.6 64.4
Transformer w/ p.p. 41.0 69.3
Conformer w/o p.p. 34.4 64.5
Conformer w/ p.p. 41.7 67.2

Table 5: Effects of data augmentation.

Method EB-F1 [%] PSDS

w/o data augmentation 41.7 0.593
w/ time-shifting 41.4 0.616
w/ mixup 42.5 0.620
w/ time-shifting & mixup 46.0 0.643

3.2.4. Effects of score fusion

Finally, we investigated the effects of the score fusion. We com-
pared the following three models;

Conformer fusion: Score fusion with the top 8 Conformer mod-
els, where each model was trained with different hyperpa-
rameter settings.

Transformer fusion: Score fusion with the top 7 Transformer
models, where each model was trained with of different hy-
perparameter settings.

Conformer & Transformer fusion: Score fusion with the top 8
Conformer models and the top 7 Transformer models.

The score-fusion result is shown in Table 6 From the result, the
score fusion yields further performance improvements and signifi-
cantly outperforms the baseline. The best model achieves the event-
based F1 score of 50.6 and the PSPD of 0.700.

4. CONCLUSION

In this technical report, we have described our submission system
for DCASE2020 Task4. Our system has been developed by us-
ing the self-attention architecture including the Transformer and
the Conformer blocks, the data augmentation techniques, the class-
dependent post-processing, and the score fusion. The experimental
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Table 6: Effects of score fusion.

Method EB-F1 [%] PSDS

Baseline 35.6 0.626
Conformer fusion 50.6 0.700
Transformer fusion 47.3 0.643
Conformer & Transformer fusion 49.8 0.626

results using the validation set have demonstrated that these tech-
niques are helpful for improving the sound event detection perfor-
mance, and our system significantly outperforms the baseline. In
future work, we will investigate the class-wise performance more
carefully to develop more effective model ensemble technique, and
further integrate source separation techniques to sound event detec-
tion.
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