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1 Visualfy, Benisanó, Spain {javier.naranjo, sergi.perez, pedro.zuccarello}@visualfy.com
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ABSTRACT

Acoustic Scene Classification (ASC) is a problem related to the field
of machine listening whose objective is to classify/tag an audio clip
in a predefined label describing a scene location such as park, air-
port among others. Due to the emergence of more extensive audio
datasets, solutions based on Deep Learning techniques have become
the state-of-the-art. The most common choice are those that im-
plement a convolutional neural network (CNN) having previously
transformed the audio signal into a 2D representation. This two-
dimensional audio representation is currently a subject of research.
In addition, there are solutions that propose several concatenated
2D representations, thus creating a representation with several in-
put channels. This article proposes two novel stereo audio repre-
sentations to maximize the accuracy of an ASC framework. These
representations correspond to the 3-channel representations such as
the left channel, the right channel and the difference between chan-
nels (L − R) using the Gammatone filter bank and the harmonic,
percussive and difference between channels sources using the Mel
filter bank. Both representations are also concatenated creating a
6-channel with different audio filter banks. Furthermore, the pro-
posed CNN is a residual network that employs squeeze-excitation
techniques in its residual blocks in a novel way to force the network
to extract meaningful features from the audio representation. The
proposed network is used in both subtasks with different modifica-
tions to meet the requirements of each one. However, since stereo
audio is not available in Subtask A, the representations are slightly
modified in that task. This technical report first presents the over-
laps of the two tasks and then makes the relevant changes to each
task in one section per task. The baselines are surpassed in both
tasks by approximately 10 percentage points.

Index Terms— Deep Learning, Convolutional Neural Net-
work, Acoustic Scene Classification, Mel-Spectrogram, Gamma-
tone, HPSS, DCASE2020

1. INTRODUCTION

The analysis of daily sounds can be an improvement in different ar-
eas that are very prone to automation such as autonomous driving
or surveillance. Acoustic scene classification (ASC) is the field of
machine listening that aims to define the location of the scene (park,
airport, etc.) based only on audio data [1, 2, 3, 4]. In turn, machine
listening can be defined as the field of artificial intelligence whose
final objective is to obtain information (location, classification, de-
tection, etc.) intelligently from audio data. The illustration of an
ASC framework can be found in Figure 1

Figure 1: Acoustic Scene Classification framework. Given an audio
input, the system must classify it into a given predefined class.

The objective of Task 1 of the DCASE 2020 Challenge is to
encourage participants to propose different solutions to address the
ASC problem in a public labeled audio dataset. In this edition, the
ASC task is divided into two subtasks that introduce particular re-
quirements to solve the ASC issue.

Subtask A proposes the problem of the ASC along with the
concern that audio clips come from different audio sources. In fact,
the audios have been recorded using 4 different recording devices.
These devices are referred as the following:

A. Soundman OKM II Klassik / studio A3, electret binaural mi-
crophone and a Zoom F8 audio recorder using 48kHz sam-
pling rate and 24 bit resolution

B. Samsung Galaxy S7

C. IPhone SE

D. GoPro Hero5 Session

In addition to these four devices, 11 simulated mobile devices
are created using the audio collect by Device A. These artificial
mobile devices are name Si being i the number of the device
1 ≤ i ≤ 11. Audios from Si are calculated passing audio from de-
vice A through convolution with the selected Si impulse response,
then processed with a selected set of parameters for dynamic range
compression (device specific). The full dataset are composed by
10 different scenes such as airport, tram, park, etc. and it has been
recorded from 12 different cities like Barcelona, Helsinki or Lisbon
among others. This dataset is named TAU Urban Acoustic Scenes
2020 Mobile [5]

For the development stage, a portion of this dataset is released.
Audios that come from devices, A, B, C and S1 − S6 are released.
Furthermore, only audios from 10 cities are released instead of the
12 available in the full dataset. The dasatet is splitted in a 70%/30%
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training/validation configuration making a total of 13965 segments
for training and 2970 segments for validation. The audios last 10
seconds and are provided in single channel 44.1kHz 24-bit format.

In evaluation stage, data from new devices will be released such
as device D and S7−S11 as well as from devices that have appeared
in development step. The data in this set comes from the 12 possible
cities. The final goal of this task is to create systems robust enough
to different devices.

Subtask B proposes a slim version of an ASC problem where
only three major classes must be targeted: indoor, outdoor and
transportation. This goal must be accomplished with low complex-
ity solutions in terms of model size.

The maximum allowed size is 500 KB for non-zero parameters.
This corresponds to a model with 128000 parameters for float32
precision. The layers whose objective is the extraction of features
or said process carried out offline (for example the calculation of
the log-Mel Spectrogram) does not count when adding parameters.
However, other transfer learning techniques that use another pre-
viously trained network for feature extraction do mean an increase
in the number of parameters because the parameters of the trans-
fer learning network (VGGish [6], L3net [7], Soundnet [8], among
others) must be added to the final classification network.

The dataset used in this subtask is named TAU Urban Acoustic
Scenes 2020 3Class. As in Subtask A, only audios of 10 cities are
available in development stage, the dataset having been recorded
in 12 cities in total. In this case, only 3 major classes want to be
classified: indoor scenes, outdoor scenes and transportation related
scenes. Audios have been recorded with device A and are provided
in 48kHz-24 bit format.

The objectives of this work are the following: firstly, the pro-
posal of a new audio stereo representation using the Gammatone
filter bank. Secondly, the proposal of a 6-channel representation
whose channels are audio representations with different scales such
as Mel and Gammatone. Finally, the analysis of the contributions
of the residual and squeeze-excitation techniques in ASC with the
restrictions or problems proposed in the subtasks.

The rest of this report is organized as follows: Section 2 ex-
plains the audio representations used in this submission plus the
general configurations of our models. Section 3 details the spe-
cific modifications of the models for Subtask A. Section 4 explains
the networks submitted in order to accomplish this subtask require-
ments. Both Section 3 and Section 4 show the obtained results in
development stage comparing them with the proposed baseline. Fi-
nally, Section 5 concludes our work.

2. METHOD

2.1. Audio representaion

Following the idea of last year submission [9] a multi-channel 2D
audio representation is used when possible. Harmonic (H) and per-
cussive (P) [10, 11] log-Mel audio representation sources showed
promising results in last year submission and this year this idea aims
to be expanded. Therefore, when possible (stereo audio is provided
as Subtask B) HPD audio representation is used being D the differ-
ence between channels (L−R). This forms an audio representation
of F × T × 3 shape being F the number of frequency bins and T
the number of temporal bins. For Subtask A, as audio is provided in
mono, HP is used as log-Mel audio representation with F × T × 2
shape.

Other audio representation that showed promising results last

year was LRD (left-right-difference) [9]. In this submission we
change the bank of filters and instead of using Mel filters, Gam-
matone filter bank (GT) is used [12, 13]. As this representation
cannot be obtained in Subtask A, Gammatone representation of the
mono signal is obtained. Finally, for Subtask B, the idea of concate-
nating both HPD and LRD is explored creating a 6 channel audio
representation.

All representations are calculated with a window size of 40
ms with 50% overlapping. For Subtask A, representations of 64
frequency bins are obtained to analyze the network’s behaviour in
problems of this nature. According to past editions and state-of-the-
art research, the decision of the spectral resolution can be a decisive
factor [14]. For Subtask B, representations of also 64 frequency bins
are calculated, as this representation show good results in last year
submission in ASC with data from the same device. GT represen-
tation where implemented using the Auditory Toolbox presented in
[15] with Python implementation and Mel representation using Li-
brosa Python module [16]

2.2. Residual Squeeze-Excitation Networks

Most Acoustic Scene Classification framework rely on the ability
of a CNN to extract meaningful features. Either in a VGG-style [6]
or Residual [17] networks are very similar between different sub-
missions. Therefore, the improvement of the systems often falls on
other aspects such as data augmentation techniques (mixup [18] and
temporal cropping among others) or the ensemble of many indepen-
dent models [19, 20, 21].

In [22] an analysis of different residual-excitation blocks pro-
posed in [23] plus the contribution of two novel blocks using the
Concurrent Spatial and Channel Squeeze and Channel Excitation
configuration presented in [24] is carried out in ASC task. The anal-
ysis is run without any data augmentation technique. According to
[22], the novel Conv-StandardPOST configuration shows the best
results in ASC problems. All networks used for this submission
incorporate this residual-excitation block. For more insight of this
choice, see [22].

2.3. Experimental details

All models have been trained with same configuration. The opti-
mizer used was Adam [25] with default parameters. The models
were trained with a maximum of 500 epochs. Batch size was set
to 32. The learning rate started with a maximum value of 0.001
decreasing with a factor of 0.5 in case of no improvement in vali-
dation accuracy after 20 epochs. The training is considered as early
finished in case of no improvement in validation accuracy after 50
epochs. Due to the competition context, mixup [18] with α = 0.4
has been implemented. Keras with Tensorflow backend was used to
implement the models of this submission.

3. SUBTASK A

In this task, it is tried to see how residual squeeze-excitation blocks
can improve scene classification in the context of mismatch devices.
So that to be accomplished, network presented in [22] has been
used. The block used for this task has been Conv-StandardPOST
that has shown better results than the other presented in the cited
work. The number of filters, and other hyperparameters such as
dropout rates, pooling sizes, activations remain the same as [22].
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Input used Submission name
M Naranjo-Alcazar Vfy task1a 1

HP Naranjo-Alcazar Vfy task1a 2

Table 1: Relationship between the systems presented in this paper
and the name of the submsission for Subtask A

Model Input Accuracy Log loss

Baseline 54.1 1.356

Proposed M 65.12 1.120

HP 61.72 1.261

Table 2: Results in development stage of the studied network and
inputs for Subtask A. Accuracy and Log loss are presented as the
average among classes.

As the audio of this subtask is provided in mono, the represen-
tation using the Gammatone filter bank will be done on the mono
signal itself (M) and the source separation will not incorporate the
difference as the third channel (HP) as explained in Section 2.

The results obtained in this subtask are shown in Table 2. The
Gammatone representation, even though it only has one input chan-
nel, shows better performance than source separation. Table 1
shows the name of the submission for each system for clarity by
the time the results of the challenge are published for Subtask A.

4. SUBTASK B

4.1. Global Performance

As this subtask’s aim is to propose Low-Complexity ASC frame-
work it has been decided to analyze the depth contribution of the
network by analyzing a slim float32 precision network and a deeper
float16 precision network. Architectures can be found in Figure 2.

As it can be appreciated in Figure 2. The networks designed in
this task are inspired by two previous works. The choice of vari-
ous hyperparameters of the network (dropouts rates or max pooling
sizes) is based on the analysis carried out last year for the same task
[9] . On the other hand, the choice of the convolutional block is
based on the work done in [22].

The results obtained for both networks: a) and b) are very simi-
lar, as shown in Table 3. Regarding the representation of the audio,
the Gammatone representation improves substantially on the rep-
resentation of the harmonic and percussive sources. The choice
to change the filter bank of the LRD representation from Mel-
spectrogram to Gammatone has led to an improvement of this rep-
resentation (LRD). Last year submission using the Mel scale in all
representations, LRD performed worse than HPD [9]. The system
with LRD input exceeds the proposed baseline by 10 percentage
points. By analyzing each class, the indoor, outdoor and transporta-
tion classes are improved by 12, 10 and 6 percentage points respec-
tively.

The concatenation of both representations of 3 channels does
not suppose an improvement in the classification since it obtains
the similar results as LRD. As it can be observed, this representa-
tion manages to improve the result in the classification of the in-
door and outdoor classes but it worsens transportation. Thus, the
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Figure 2: Networks submitted for Subtask B. A) network has
float32 precision while B) needs to be changed to float16 precision
to satisfy task requirements

average is slightly lower than the LRD representation. The use of a
6-channel input forces the choice of ratio equal to 4 in the second
Conv-StandardPOST in network a) to meet the complexity require-
ments. Table 5 shows the name of the submission for each system
for clarity by the time the results of the challenge are published for
Subtask B.

4.2. Model Complexity

As explained in Section 1 this subtask has an extra restriction as
the size/complexity of the model. The limit is 500 KB for non-zero
parameters. This limit disables any transfer learning technique be-
cause the networks that would be used for feature extraction must
also be taken into account. In the context of this work, it has been
decided to design a network that meets such requirements with
float32 precision (see Figure 2a)) and a deeper one with a greater
number of non-zero parameters but which has float16 precision (see
Figure 2b)). For complexity calculation purposes, a script is pro-
vided by the organizers that has been used. Its outcomes are shown
in Table 4.

As it can be noticed in the Table 4, all the models meet the
complexity requirements. Regarding the float32 precision models,
it must be taken into account that when the input has 6 channels,
the second ratio has been modified to 4. Therefore, the model size
is smaller. On the other hand, it is true that with precision float16,
there are still some free KB. However, it has been observed that
deeper networks than this show worse results, being very prone to
overfitting.
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Model Input Accuracy Log-Loss

indoor outdoor transportation avg indoor outdoor transportation avg

Baseline 82.0 88.5 91.5 87.3 0.680 0.365 0.282 0.437

a)
HPD 92.2 90.5 97.0 93.2 0.258 0.344 0.191 0.270

LRD 94.9 98.6 97.7 97.1 0.189 0.105 0.107 0.132

LRDHPD 95.7 98.8 96.6 97.0 0.131 0.063 0.129 0.104

b)
HPD 90.7 95.6 95.7 94.0 0.362 0.239 0.258 0.283

LRD 95.4 98.0 97.4 96.9 0.161 0.107 0.140 0.134

LRDHPD 94.1 97.9 97.5 96.5 0.220 0.132 0.164 0.172

Table 3: Results in development stage of studied networks and inputs for Subtask B

Model No Channels Precission Total Size

Baseline 1 float32 450 KB

A 3 float32 496.3 KB
6 495.8 KB

B 3 float16 477.2 KB
6 479.1 KB

Table 4: Complexity of the models submitted to Subtask B

Input used CNN Submission name
LRD a) Naranjo-Alcazar Vfy task1b 1

HPDLRD a) Naranjo-Alcazar Vfy task1b 2

Table 5: Relationship between the systems presented in this paper
and the name of the submsission for Subtask B

5. CONCLUSION

For Subtask A, the Gammatone representation has been shown to
perform better than source separation. The presented network im-
proves the baseline by 11 percentage points. However, the mis-
match devices problem requires a more meticulous study when it
comes to representing the audio or when dealing with such repre-
sentation internally over the network. It is hoped that a more op-
timal representation in this case plus the blocks presented in this
work may show better results in the future.

Regarding Subtask B, it has been demonstrated that the repre-
sentations studied in the previous submission (HPD and LRD) are
suitable for the low-complexity ASC task. The LRD representation
has been modified with the Gamamtone filter bank. As far as the
network is concerned, it has been proven that extremely deep net-
works are not necessary for this task and with the datasets available.
It can be concluded that when there are some limitations regarding
the neural network, the point of study is the representation of the
audio. The same network has shown different results, in fact, 4
percentage points of difference according to the representation used
(HPD vs LRD in network a)). Unlike the image field, in the audio
field, CNNs need a 2D representation that enhances the events to
be detected or classified. This step is not trivial and should not be
overlooked by solutions that obviate this problem by making huge

ensembles or generating infinite samples to train the network. One
of the challenges for the ASC right now is the implementation of
these systems in a real-time environment taking into account exist-
ing limitations. In this case, audio representation plays a crucial
role in achieving the shallowest possible networks.

6. ACKNOWLEDGEMENTS

The participation of Javier Naranjo-Alcazar and Dr. Pedro Zuc-
carello in this work is partially supported by Torres Quevedo fel-
lowships DIN2018-009982 and PTQ-17-09106 respectively from
the Spanish Ministry of Science, Innovation and Universities.

7. REFERENCES

[1] A. Mesaros, T. Heittola, and T. Virtanen, “Acoustic scene
classification: an overview of dcase 2017 challenge entries,”
in 2018 16th International Workshop on Acoustic Signal En-
hancement (IWAENC). IEEE, 2018, pp. 411–415.

[2] ——, “Acoustic scene classification in dcase 2019 challenge:
Closed and open set classification and data mismatch setups,”
2019.

[3] M. Valenti, A. Diment, G. Parascandolo, S. Squartini, and
T. Virtanen, “Dcase 2016 acoustic scene classification using
convolutional neural networks,” in Proc. Workshop Detection
Classif. Acoust. Scenes Events, 2016, pp. 95–99.

[4] D. Barchiesi, D. Giannoulis, D. Stowell, and M. D. Plumbley,
“Acoustic scene classification: Classifying environments from
the sounds they produce,” IEEE Signal Processing Magazine,
vol. 32, no. 3, pp. 16–34, 2015.

[5] A. Mesaros, T. Heittola, and T. Virtanen, “A multi-device
dataset for urban acoustic scene classification,” in Proceedings
of the Detection and Classification of Acoustic Scenes and
Events 2018 Workshop (DCASE2018), November 2018, pp.
9–13. [Online]. Available: https://arxiv.org/abs/1807.09840

[6] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[7] J. Cramer, H.-H. Wu, J. Salamon, and J. P. Bello, “Look,
listen, and learn more: Design choices for deep audio em-
beddings,” in ICASSP 2019-2019 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2019, pp. 3852–3856.



Detection and Classification of Acoustic Scenes and Events 2020 Challenge

[8] Y. Aytar, C. Vondrick, and A. Torralba, “Soundnet: Learning
sound representations from unlabeled video,” in Advances in
neural information processing systems, 2016, pp. 892–900.

[9] S. Perez-Castanos, J. Naranjo-Alcazar, P. Zuccarello, M. Co-
bos, and F. J. Ferri, “Cnn depth analysis with different chan-
nel inputs for acoustic scene classification,” arXiv preprint
arXiv:1906.04591, 2019.

[10] D. Fitzgerald, “Harmonic/percussive separation using median
filtering,” in Proc. of DAFX, vol. 10, no. 4, 2010.

[11] J. Driedger, M. Müller, and S. Disch, “Extending harmonic-
percussive separation of audio signals.” in ISMIR, 2014, pp.
611–616.

[12] S. Tabibi, A. Kegel, W. K. Lai, and N. Dillier, “Investigating
the use of a gammatone filterbank for a cochlear implant cod-
ing strategy,” Journal of neuroscience methods, vol. 277, pp.
63–74, 2017.

[13] Z. Zhang, S. Xu, S. Cao, and S. Zhang, “Deep convolutional
neural network with mixup for environmental sound classi-
fication,” in Chinese Conference on Pattern Recognition and
Computer Vision (PRCV). Springer, 2018, pp. 356–367.

[14] K. J. Piczak, “The details that matter: Frequency resolution of
spectrograms in acoustic scene classification,” Detection and
Classification of Acoustic Scenes and Events, pp. 103–107,
2017.

[15] M. Slaney, “Auditory toolbox,” Interval Research Corpora-
tion, Tech. Rep, vol. 10, no. 1998, 1998.

[16] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar,
E. Battenberg, and O. Nieto, “librosa: Audio and music sig-
nal analysis in python,” in Proceedings of the 14th python in
science conference, vol. 8, 2015.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 770–
778.

[18] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,
“mixup: Beyond empirical risk minimization,” arXiv preprint
arXiv:1710.09412, 2017.

[19] Y. Han, J. Park, and K. Lee, “Convolutional neural networks
with binaural representations and background subtraction for
acoustic scene classification,” the Detection and Classification
of Acoustic Scenes and Events (DCASE), pp. 1–5, 2017.

[20] H. Chen, Z. Liu, Z. Liu, P. Zhang, and Y. Yan, “Integrating the
data augmentation scheme with various classifiers for acoustic
scene modeling,” arXiv preprint arXiv:1907.06639, 2019.

[21] K. Koutini, H. Eghbal-zadeh, and G. Widmer, “Cp-jku sub-
missions to dcase’19: Acoustic scene classification and audio
tagging with receptive-field-regularized cnns,” in Proceedings
of the Detection and Classification of Acoustic Scenes and
Events 2019 Workshop (DCASE2019), 2019.

[22] J. Naranjo-Alcazar, S. Perez-Castanos, P. Zuccarello,
and M. Cobos, “Acoustic scene classification with
squeeze-excitation residual networks,” arXiv preprint
arXiv:2003.09284, 2020.

[23] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation
networks,” 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Jun 2018. [Online]. Available:
http://dx.doi.org/10.1109/CVPR.2018.00745

[24] A. G. Roy, N. Navab, and C. Wachinger, “Concurrent spatial
and channel ‘squeeze & excitation’in fully convolutional net-
works,” in International Conference on Medical Image Com-
puting and Computer-Assisted Intervention. Springer, 2018,
pp. 421–429.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic op-
timization,” arXiv preprint arXiv:1412.6980, 2014.


