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ABSTRACT
Anomalous sound detection (ASD) is one of the fields of machine
listening that is attracting most attention among the scientific com-
munity. Unsupervised detection is attracting a lot of interest due
to its immediate applicability in many fields. For example, related
to industrial processes, the early detection of malfunctions or dam-
age in machines can mean great savings and an improvement in
the efficiency of industrial processes. This problem can be solved
with an unsupervised ASD solution since industrial machines will
not be damaged simply by having this audio data in the training
stage. This paper proposes a novel framework based on convolu-
tional autoencoders (both unsupervised and semi-supervised) and a
Gammatone-based representation of the audio. The results obtained
by these architectures substantially exceed the results presented as
a baseline.

Index Terms— Deep Learning, CNN, ASD, autoencoder, un-
supervised learning

1. INTRODUCTION

Anomaly sound detection (ASD) has received much interest from
the scientific community in recent years. The early detection of
these events can mean a substantial improvement in systems that
face this problem such as surveillance [1, 2] via audio or predictive
maintenance [3, 4]. This last case is related to the industrial process
and the early detection of a possible failure in the process machinery
can mean a great advance and savings in the production of industrial
products.

The ASD problem can be separated into two categories. Those
problems in which the anomalous event to be detected is available
in the training phase (supervised-ASD) [5] and those problems in
which no such sound event is available (unsupervised-ASD) [6, 7].
Supervised-ASD can be defined as a kind of sound event detection
(SED) but with some peculiarities like the duration or the nature of
the sound event, like for example, a gunshot. On the other hand,
in the unsupervised-ASD problem the objective is the detection of
unknown or anomaly sound events without the system being aware
of their existence, i.e. no anomalous events are available in the
training data set. This is a case of real application in the industry
today because it is unthinkable to purposely damage machines of
great economic cost to obtain audio samples. A good unsupervised-
ASD system should be able to recognize the anomaly by training
only with samples from non-anomalous, or normal, sound events.

As it can be seen, this problem cannot be dealt as a classic clas-
sification problem like Acoustic Event Classification [8] or Audio
tagging [9]. In this problem, there is a class, called unknown or

anomaly, that must be recognized without the existence of positive
samples of that class in the training set. In the case of engines or
industrial machinery, the samples belonging to the anomaly class,
or anomalous samples, are audio clips recorded when the machine
is not working in the expected normal regime. The assumption is
that this anomalous sounds show a different pattern than the ones
produced with the machine working in normal regime. Therefore,
if only one kind of training is available, a typical way of dealing
with this kind of problem would be an outlier-detection scheme,
that is, calculating the deviation, or difference, between the normal
samples and the anomalies, this value is known as anomaly score.
If this value exceeds a certain threshold, the sample is considered
anomalous.

The first approaches to the unsupervised-ASD problem were
made using classic machine learning techniques such as Gaussian
mixture model [4] or Support vector machine [2]. In the last few
years, due to the availability of larger amounts of data, Deep Learn-
ing techniques have become the state of the art in this field. As
the main objective is to obtain a value, anomaly score, which pro-
vides us with information about the anomaly, the proposal of au-
toencoders seems to be a reasonable solution. Different architec-
tures such as unsupervised autoencoders [10, 11, 12, 13] have been
proposed in the state of the art. These solutions often implement re-
current or Dense layers in their solutions rather than convolutional.
A different strategy may be the use of generative adversarial net-
works (GAN) [14]. This type of network is composed of two mod-
ules: the generator and the discriminator. The first one is in charge
of generating false samples and the second one of discerning if the
sample is false or real.

This work aims to propose a novel sound detection of anoma-
lies based on a trained convolutional autoencoder with a 2D audio
representation. As the information about the type of machine is
available, one of the autoencoders proposed has a semi-supervised
architecture. The other architecture is unsupervised, i.e. such infor-
mation is not taken into account. The simplest approach would be
to calculate an anomaly score per machine, that is, to train as many
autoencoders as there are machines available. In this way, the au-
toencoder would be specialized to this type of machine. However,
our approach is more complex since we obtain a single anomaly
detector (autoencoder in this case) for all the machines.

2. PROPOSED METHOD

The proposed method is constituted by two steps: a 2D audio rep-
resentation and a convolutional autoencoder with a bottleneck layer
that serves as a divider between the encoder and the decoder. It is
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Figure 1: Full framework for ASD based on a Convolutional Autoencoder. Step a) shows the chosen audio representation and step b) the
designed autoencoder architecture. The numbers indicate the number of filters in each convolutional block.

important to emphasize that a single autoencoder is trained for all
available machines. As mentioned in the task description, this solu-
tion is much more challenging than proposing one autoencoder per
machine type.

2.1. Audio representation

The 2D audio representation used in this framework is based on
Gammatone filters [15]. This filter bank has shown promising re-
sults in the task of audio classification, surpassing the representa-
tion based on Mel filters [16], proposed, for example, in the MIMII
dataset baseline [17]. Temporal bins are calculated with a window
size of 40 ms and an overlap of 50%. The number of filters or fre-
quency bins is set to 64. Once the representation is obtained, the
logarithm is calculated and a normalization of mean 0 and standard
deviation 1 is performed for each frequency bin with all available
data. Therefore, the representation has a size of 64× T × 1, where
T corresponds to the temporal bins according to the duration of the
audio.

2.2. Autoencoder architecture

The autoencoder is made up of convolutional layers and a Dense
layer that acts as a bottleneck. As can be seen in Figure 1, the
encoder and decoder have a symmetric architecture. As can be rec-
ognized, each one is composed of 3 convolutional blocks. Each
convolutional block is actually composed of 7 layers. The convolu-
tional layer, the batch normalization (BN) layer and the activation
layer, in this case ReLU. This set of 3 layers is repeated twice and
followed by a pooling layer. In the case of the decoder, the pool-
ing layer is replaced by an upsampling layer. The bottleneck layer
corresponds to a Dense layer of 128 neurons with linear activation.
This layer is the least dimensional representation that the encoder
makes of the input signal and from which the decoder must be able
to reconstruct to obtain the same input signal. Unlike the encoder,
the decoder has an extra convolutional layer with 1 filter and linear
activation that is responsible for reconstructing the representation
of the input.

The architecture explained previously corresponds to an unsu-
pervised autoencoder, that is, its only purpose is to reconstruct the
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Figure 2: Semi-supervised autoencoder architecture

input without taking into account extra information such as the class
to which the input belongs. Therefore, the cost function to be opti-
mized in this architecture is the mean squared error (MSE).

By having the information of what type of machine is associ-
ated with each audio, the autoencoder can be modified to take this
into account. In this case, semi-supervised is understood because
the supervised information corresponds to the type of machine, not
if the sample is anomalous or normal as defined in [18]. The change
consists of adding a classification layer by means of a Dense layer
with the number of units equal to the number of machine classes
available in the dataset. This layer is connected to the bottleneck
layer, which, as previously mentioned, is where the information is
most compressed. Thus, a semi-supervised architecture of the au-
toencoder is made. This modification can be seen in Figure 2. With
this change, the cost function is affected and the classification error
is now taken into account by means of the categorical crossentropy
loss (CCE):

Lss = αLmse + βLcce (1)

where Lmse corresponds to the mean squared error and Lcce

represents the categorical crossentropy loss. α and β are weighting
factors such that α+ β = 1.
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Framework AUC

ToyCar ToyConveyor fan pump slider valve

B 78.77±1.03 72.53±0.67 65.83±0.53 72.89±0.70 84.76±0.29 66.28±0.49

U 95.67 96.63 79.87 81.51 80.86 82.85

U FD 91.12 93.36 80.40 82.61 81.16 83.19

SS-0.7-0.3 87.27 90.35 78.63 80.33 78.94 80.94

Table 1: Results AUC (%) obtained by the proposed frameworks compared to the baseline proposed with the dataset. Baseline is denoted
by B. The unsupervised autoencoder is represented with U and the semi-supervised one with SS followed by α and β values, i.e. SS-0.7-0.3
corresponds to the semi-supervised architecture with α = 0.7 and β = 0.3. FD denotes that full dataset was used in training stage (1st and
2nd release).

Framework pAUC

ToyCar ToyConveyor fan pump slider valve

B 67.58±1.04 60.43±0.74 52.45±0.21 59.99±0.77 66.53±0.62 50.98±0.15

U 87.14 90.45 70.78 70.99 70.69 71.62

U FD 73.41 80.32 72.56 72.23 69.94 72.34

SS-0.7-0.3 74.21 81.50 71.26 70.94 70.08 70.83

Table 2: Results pAUC (%) obtained by the proposed frameworks compared to the baseline proposed with the dataset. Notation is explained
in Table 1

3. RESULTS

The dataset used to train and evaluate models is the one used in De-
tection and Classification of Acoustic Scenes and Events (DCASE)
2020 Task2, focused on ASD. It consists in subsets of ToyADMOS
[19] and MIMII [17] datasets. From the first one, car and conveyor
classes are combined with valve, pump, fan and slide rail classes
from the second one. In this context, a class corresponds to a ma-
chine type.

Results obtained in this task are shown in Tables 1 and 2. As it
can be appreciated, all the proposed frameworks exceed the results
presented as a baseline [20] except the class slider. The architec-
ture that shows a better result is the unsupervised one. However,
some machines show a better result when the training set corre-
sponds only to the portion released in the first release.

As it can be observed, the improvement is substantial in all ma-
chines obtaining the lowest improvement in the pump class of about
10 percentage points. On the other hand, ToyConveyor is the ma-
chine that has been most improved with about 24 more percentage
points compared to the baseline. As far as the slider machine is
concerned, a decrease of about 4 perceptual points is obtained.

As for the semi-supervised architecture, it seems that this extra
information during training adds noise to the internal representa-
tions generated by the convolutional layers. However, a much more
comprehensive grid-search is needed for both α and β.

Table 3 shows the name relationship between the submission
name and the results shown in this work.

Autoencoder used Data used Submission name
Unsupervised 1st release Naranjo-Alcazar Vfy task2 1

Unsupervised Full data Naranjo-Alcazar Vfy task2 2

Semi-supervised 1st release Naranjo-Alcazar Vfy task3 3

Table 3: Relationship between the name of the submission and the
implementation explained in this paper.

4. CONCLUSION

The state of the art in the field of Anomalous sound detection has
shown the great potential that solutions based on autoencoders have
for mitigating the problems related to this task. Different architec-
tures have been proposed, such as variational autoencoders. How-
ever, it is not so common the appearance of autoencoders with con-
volutional layers. Therefore, this paper shows the potential of such
layers to extract relevant information when reconstructing the audio
in order to obtain the necessary anomaly score to discern whether
the sample is anomalous or not. In addition, it is also studied how a
semi-supervised architecture behaves in this kind of problems. Re-
garding the audio representation, the choice was made to use the
Gammatone representation instead of the one based on Mel filters
or instead of converting the audio into a one dimensional vector as
it is proposed in several state of the art solutions.
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