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ABSTRACT
Sound event localization and detection consist of two subtasks
which are sound event detection and direction-of-arrival estimation.
While sound event detection mainly relies on time-frequency pat-
terns to distinguish different sound classes, direction-of-arrival esti-
mation uses magnitude or phase differences between microphones
to estimate source directions. Therefore, it is often difficult to
jointly train two subtasks simultaneously. Our previous sequence
matching approach solves sound event detection and direction-of-
arrival separately and trains a convolutional recurrent neural net-
work to associate the sound classes with the directions-of-arrival us-
ing onsets and offsets of the sound events. This approach achieved
better performance than other state-of-the-art networks such as the
SELDnet, and the two-stage networks for static sources. Experi-
mental results on the new DCASE dataset for sound event local-
ization, detection, and tracking of multiple moving sound sources
showed that the sequence matching network also outperformed the
jointly trained SELDnet model. In order to estimate directions-of-
arrival of moving sound sources with high spatial resolution, we
proposed to separate the directional estimations into azimuth and
elevation before passing them to the sequence matching network.
We combined several sequence matching networks into ensembles
and achieved a sound event detection and localization error of 0.217
compared to 0.466 of the baseline.

Index Terms— CRNN, DCASE, direction-of-arrival estima-
tion, sequence matching network, sound event detection.

1. INTRODUCTION

Sound event localization and detection (SELD) has many applica-
tions in urban sound sensing [1], wild life monitoring [2], surveil-
lance [3], autonomous driving [4], and robotics [5]. The SELD
task recognizes the sound class, and estimates the direction-of-
arrival (DOA), the onset, and offset of a detected sound event [6].
Polyphonic SELD refers to cases where there are multiple sound
events overlapping in time. DCASE2020 challenge introduces a
new SELD dataset with multiple moving sound sources [7]. Many
existing SELD algorithms are frame-based, therefore they extend
naturally to the additional task of tracking moving sound sources.

SELD consists of two subtasks, which are sound event detec-
tion (SED) and direction-of-arrival estimation (DOAE). In the past
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decade, deep learning has achieved great success in classifying, tag-
ging, and detecting sound events [8]. The state-of-the-art SED mod-
els are often built from convolutional neural networks (CNN) [1],
recurrent neural networks (RNN) [9], and convolutional recurrent
neural networks (CRNN) [6, 10]. DOAE tasks for small-aperture
microphone arrays are often solved using signal processing algo-
rithms such as minimum variance distortionless response (MVDR)
beamformer [11], multiple signal classification (MUSIC) [12], and
steered-response power phase transform (SRP-PHAT) [13]. To
tackle the multi-source cases, many researches exploit the non-
stationarity and sparseness of the audio signals to find the single-
source time-frequency (TF) regions on the spectrogram to reliably
estimate DOAs [14, 15, 16]. Recently, deep learning has also been
successfully applied to DOAE tasks [17, 18], and the learning-based
DOA models show good generalization to different noise and rever-
beration levels. However, the angular estimation error is still high
for multi-source cases.

To solve SELD problem, Adavanne et al. proposed a single-
input multiple-output CRNN model called SELDnet that jointly de-
tects sound events and estimates DOAs [6]. The model’s loss func-
tion is a weighted sum of the individual SED and DOAE loss func-
tions. The SELDnet is also applied to solve SELD for multiple mov-
ing sources [19]. Because SED and DOAE requires different acous-
tic information from the audio inputs, the joint estimation affects the
performance of both tasks. To mitigate this problem, Cao et al. pro-
posed a two-stage strategy for training SELD models [20]. First, a
SED model using a CRNN architecture is trained by minimizing the
SED loss function using all the available data. After that, the CNN
weights of the SED model is transferred to the DOA model, which
has the same architecture as the SED model. The DOA model is
trained by minimizing the DOA loss function using only the data
that have active sources. The SED outputs are used as masks to se-
lect the corresponding DOA outputs. This training scheme signif-
icantly improves the performance of the SELD system. However,
the DOA model is still dependent on the SED model for detect-
ing the active signals, and the network learns to associate specific
sources with specific directions in the training data. In the DCASE
2019 challenge, the top solution trained four separated models for
sound activity detection (SAD), SED, single-source and two-source
DOAE respectively [21]. This solution heavily used heuristic rules
to determine the single-source and two-source segments of the sig-
nal to infer the sound classes and DOAs. This approach is highly
dependant on the estimation of the number of sources which are not
reliable in noisy environments.
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Our previous research proposed a novel two-step approach that
decoupled the learning of the SED and DOAE systems [22]. In
the first step, we used Cao’s CRNN model [20] to detect the sound
events, and a single-source histogram method [15] to estimate the
DOAs. In the second step, we trained a CRNN-based sequence
matching network (SMN) to match the two output sequences of the
event detector and DOA estimator. The motivation of this approach
is that overlapping sounds often have different onsets and offsets.
By matching the onsets, the offsets, and the active segments in the
output sequences of the sound event detector and the DOA estima-
tor, we can associate the estimated DOAs with the corresponding
sound classes. This modular and hierarchical approach significantly
improves the performance of the SELD task across all the evalua-
tion metrics. We applied our two-step method for the DCASE2020
SELD challenge with several modifications. First, our experimen-
tal results showed that spatial features such as generalized cross-
correlation phase transform (GCC-PHAT) [20] for microphone for-
mat and intensity vector [23] for ambisonic format does not help
SED in the moving sources cases. Therefore we only used logmel
spectrogram to train SED model. Second, the azimuth and eleva-
tion resolution of the DCASE2020 SELD dataset was 1◦ compared
to 10◦ of the DCASE2019 SELD dataset, therefore the size of the
joint 2D single-source histogram significantly increased. The large
dimension of the 2D histogram is not optimal for the SMN, there-
fore we proposed to use 1D histograms for azimuth and elevation
separately instead of the joint 2D azimuth-elevation histogram as
inputs to the SMN. Third, to boost performance, we combined sev-
eral SED models into a SED ensemble to train several SMN models,
which in turn were combined to form a SMN ensemble. The rest
of our paper is organized as follows. Section II describes our SMN
network for SELD. Section III presents the experimental results and
discussions. Finally, we conclude the paper in Section IV.

2. SEQUENCE MATCHING NETWORK FOR SOUND
EVENT LOCALIZATION AND DETECTION

Figure 1 shows the block diagram of a SMN for SELD. The SED
network is similar to the one proposed by Cao et al [20]. The
DOAE module uses a non-learning signal processing approach to
robustly estimate the DOAs of sound sources regardless of the
sound classes [15]. The output sequences of the SED network and
DOAE module are the inputs of the SMN. The SMN uses CNN lay-
ers to learn patterns on the azimuth and elevation histogram before
concatenating them with the SED inputs. A bidirectional gated re-
current unit (GRU) is used to match the DOA and SED sequences.
Fully connected (FC) layers are used to produce the final SELD es-
timates. The SED subtask is formulated as multi-label multi-class
classification. The DOAE subtask is formulated as regression of the
Cartesian coordinates on a unit sphere.

2.1. Sound event detection

We use a CRNN-based SED network that uses log-mel spectrogram
as input features. Our experimental results show that GCC-PHAT
and intensity vector are not helpful for detecting multiple mov-
ing sound sources. The DCASE2020 SELD dataset has 14 sound
classes with various length in noisy environments. To improve the
SED performance, we use various data augmentation such as ran-
dom cut-out, erasing columns of time steps and rows of frequency
bands [24], mixup, and frequency shift.

Table 1: A CRNN-based SED network for 14 sound classes
Stage Layer description
conv1 (conv2d 64 3x3, BN, ReLu) x 2, 2x2 average pooling
conv2 (conv2d 128 3x3, BN, ReLu) x 2, 2x2 average pooling
conv3 (conv2d 256 3x3, BN, ReLu) x 2, 2x2 average pooling

pooling average pooling frequency dimension
GRU bidirectional GRU 128
FC dropout(0.2), FC 14, sigmoid

total parameters 1454122

The SED base network consists of 6 CNN layers, 1 bidirec-
tional GRU layer, and 1 FC layer as shown in Table 1. The SED is
formulated as multi-label multi-class classification. We use the raw
probability outputs of the SED network as the input to the SMN in
step 2. We modify the base SED network in term of pooling size
and number of filters to produce several variants. The outputs of
these models are averaged to produce an SED ensemble.

2.2. Direction-of-arrival estimation

We use a single-source histogram algorithm proposed in [15] to
estimate DOAs. The single-source histogram finds all the time-
frequency (TF) bins that contains energy from mostly one source.
A TF bin is considered to be a single-source TF bin when it passes
all three tests: magnitude, onset, and coherence test. Magnitude
test finds the TF bins that are above a noise floor to mitigate the
effect of background noise. Onset test finds the TF bins that be-
long to direct-path signals to reduce the effect of reverberation in
the DOA estimation. Coherence test finds the TF bins of which the
covariance matrices are approximately rank-1. After all the single-
source TF bins are found, the DOA at each bin is computed using
the theoretical steering vector of the microphone array [15]. These
DOAs are discretized using the required resolution of azimuth and
elevation angles. Subsequently, these DOAs are populated into 2
1D histograms, one for azimuth, one for elevation. Our experimen-
tal results show that DOA estimation without onset slightly increase
the DOA frame recall but slightly increase the DOA error. The over-
all SELD error is improved without onset detection. A resolution of
5◦ for both azimuth and elevation are used to estimate the 1D az-
imuth and 1D elevation histogram. The sizes of the azimuth and el-
evation histograms for each time frame are 72 and 19, respectively.
Fig. 2 shows the estimated azimuth and elevation histograms for a
two-source 60-s audio clip. Visually, the single-source histogram
algorithm accurately estimates the azimuths with clear onsets and
offsets for moving sound sources even for narrow angular distance.
The elevation estimates are more blurry than the azimuth estimates.

2.3. Sequence matching network

SMN is a multiple-input multiple-output CRNN. The input features
to the SMN are the SED prediction probabilities, 1D azimuth and
1D elevation histograms. The outputs of the SMN are the SED
prediction probabilities and the DOA Cartesian coordinate on the
unit sphere. Similar to the baseline, our experimental results show
that regression using Cartesian coordinate format results in lower
DOA errors than polar coordinate format does. The SMN consists
of 4 CNN blocks for each of the azimuth and elevation histograms, 2
bidirectional GRU layer, and 4 FC layer as shown in Fig. 1. Table 2
shows the details of the SMN. We train the base SMN with different
input lengths of 4, 6, 8, 10, and 15 seconds and combines these
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Figure 1: Block diagram of the two-step sound event localization and detection. Step 1: SED network and DOA module generate SED and
DOA output sequences ( 1D azimuth and elevation histograms for each time step). Step 2: Sequence matching network matches the sound
classes, azimuths and elevations for detected sound events. nframes is the number of time frames of one training samples, nclasses is the
number of sound classes, nazis is the number of azimuths, and neles is the number of elevations.

Table 2: A CRNN-based SMN network. The table entries are not in
sequence. Refer to Fig.1

Stage Layer description
azi conv1 (conv2d 16 3x3, BN, ReLu) x 2, 2x2 average pooling
azi conv2 (conv2d 32 3x3, BN, ReLu) x 2, 2x2 average pooling
azi conv3 (conv2d 64 3x3, BN, ReLu) x 2, 2x2 average pooling
azi conv3 (conv2d 96 3x3, BN, ReLu) x 2, 2x2 average pooling

azi pooling average pooling angle dimension and upsampling
ele conv1 (conv2d 8 3x3, BN, ReLu) x 2, 2x2 average pooling
ele conv2 (conv2d 16 3x3, BN, ReLu) x 2, 2x2 average pooling
ele conv3 (conv2d 32 3x3, BN, ReLu) x 2, 2x2 average pooling
ele conv3 (conv2d 64 3x3, BN, ReLu) x 2, 2x2 average pooling

ele pooling average pooling angle dimension and upsampling
concatenate SED , azimuth feature, elevation feature

GRU (bidirectional GRU 128) x 2
SED FC dropout(0.2), FC 14, sigmoid

DOA-x FC dropout(0.2), FC 14
DOA-y FC dropout(0.2), FC 14
DOA-z FC dropout(0.2), FC 14

total parameters 829427

different models into a SMN ensemble by averaging the SED and
DOA outputs.

3. EXPERIMENTAL RESULTS AND DISCUSSIONS

We used the FOA format of the DCASE2020 SELD dataset [7] for
the challenge. The SELD development dataset consists of 600 one-
minute audio clips divided into training, validation, and test set of
size 400, 100, and 100 clips, respectively. All 600 clips were used
to train models for evaluation. There are 14 sound classes. The
sound durations are between 0.3 and 15 seconds. The azimuth and
elevation ranges are [−180◦, 180◦) and [−45◦, 45◦], respectively.
We used azimuth and elevation resolutions of 5◦.

3.1. Evaluation metrics

The SELD task was evaluated for SED and DOAE subtask sepa-
rately in the 2019 SELD challenge. This year, a new evaluation
metrics that take into account the correct association between sound
classes and DOA are introduced [25]. A sound event is considered
correct detection if it has correct class prediction and its estimated
DOA is less than 20◦ from the DOA ground truth. The DOA met-
rics are computed for each class before averaging. Since we solved
SED and DOAE separately before joining them, both 2019 and
2020 evaluation metrics were used in our experiments. The 2019
version was used to evaluate the performance of SED networks and
DOAE modules separately. The 2020 version was used to evaluate
the performance of the SMNs.

3.2. Hyper-parameters and training procedure

Hyper-parameters for processing raw audio signals are sampling
rate of 24 kHz, window length of 1024 samples, hop length of 300
samples (12.5 ms), Hann window, and 1024 FFT points. 128 mel
bands were used to extract log-mel features. For the single-source
histogram estimation, we used magnitude signal-to-noise ratio of
1.5 for the magnitude test, and a condition number of 5 for the co-
herence test. Adam optimizer was used to train the SED networks
and the SMNs. We train the SED network for 50 epochs with the
learning rate set to 0.001 for the first 30 epochs and reduced by
10% for each subsequent epoch until it reaches 0.0001. We train
the SMN for 60 epochs with the learning rate set to 0.001 for the
first 30 epochs and reduced by 10% for each subsequent epoch.

3.3. Our challenge submissions

We combined the outputs of 4 SED models to form an SED ensem-
ble. This SED ensemble are used to train 6 SMN models using the
same SMN base network with different input lengths. The outputs
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(a) Azimuth ground truth

(b) 1D azimuth histogram

(a) Elevation ground truth

(b) 1D elevation histogram

Figure 2: 1D azimuth and elevation histograms of a two-source au-
dio clip. The classes are color coded in the ground truths. Pictures
viewed better with color

Table 3: Submissions for DCASE2020 SELD challenge.

Submission name Descriptions
SMN-EN-1 ensemble of 4 SMN models, SED threshold = 0.3
SMN-EN-2 ensemble of 5 SMN models, SED threshold = 0.3
SMN-EN-3 ensemble of 6 SMN models, SED threshold = 0.3
SMN-EN-4 ensemble of 6 SMN models,

use best SED threshold on the test set

of the 6 SMN models are combines to form several SMN ensem-
bles. The best 4 SMN ensembles evaluated using the provided test
set are selected for submissions. The details of the 4 submissions
are as shown in Table 3.

3.4. SELD baselines and SMNs

We compared the performance of our submissions with the follow-
ing methods.:

• Baseline: A CRNN-based network called SELDnet that jointly
train SED and DOAE [6], with log-mel and spatial input features
and masking loss for DOA [20],

• SED-base: the base model for SED as shown in Section 2.1,

• SED-en: ensemble of 4 different SED models which are variants
of SED-base,

• SS-hist: single-source histogram for DOAE estimation. The
DOA are selected as highest peaks of the joint 2D azimuth-
elevation histogram that above a certain threshold,

• SMN-base: the SMN network for SELD as shown in Section 2.3.
This network take the class prediction probabilities of the SED-
en and 1D histograms of the single-source histogram method as
input features,

Table 4: SELD development results using validation set

Methods Metrics ER F DE FR SELD
Baseline 2019 0.53 64.3 19.5◦ 68.4 0.327
Baseline 2020 0.72 39.1 24.0◦ 64.3 0.455

SED-base 2019 0.239 85.0 NA NA NA
SED-EN 2019 0.180 88.9 NA NA NA
SS-hist 2019 NA NA 6.6◦ 74.7 NA

SMN-base 2019 0.196 88.3 10.6◦ 77.7 0.149
SMN-base 2020 0.305 76.2 11.7◦ 88.4 0.181
SMN-EN-1 2020 0.292 77.3 10.3◦ 88.7 0.172
SMN-EN-2 2020 0.291 77.3 10.4◦ 88.888.888.8 0.172
SMN-EN-3 2020 0.2900.2900.290 77.4 10.2◦ 88.7 0.1710.1710.171
SMN-EN-4 2020 0.2900.2900.290 77.677.677.6 10.1◦10.1◦10.1◦ 88.7 0.1710.1710.171

Table 5: SELD development results using test set

Methods Metrics ER F DE FR SELD
Baseline 2019 0.54 60.9 20.4◦ 66.6 0.345
Baseline 2020 0.72 37.4 22.8◦ 60.7 0.466

SED-base 2019 0.299 80.7 NA NA NA
SED-EN 2019 0.278 81.6 NA NA NA
SS-hist 2019 NA NA 8.5◦ 73.2 NA

SMN-base 2019 0.272 81.4 11.3◦ 77.8 0.186
SMN-base 2020 0.381 69.4 13.5◦ 81.5 0.237
SMN-EN-1 2020 0.356 71.5 12.0◦12.0◦12.0◦ 81.9 0.222
SMN-EN-2 2020 0.357 71.4 12.1◦ 82.0 0.221
SMN-EN-3 2020 0.359 71.2 12.1◦ 82.0 0.223
SMN-EN-4 2020 0.3490.3490.349 71.971.971.9 12.1◦ 82.782.782.7 0.2170.2170.217

3.5. SELD experimental results

The SELD development results of the validation and test set us-
ing both the 2019 and 2020 evaluation metrics consistently showed
that our SMN-base and SMN ensembles outperformed the baseline
SELDnet by a large margin. The 2020 metrics penalized the mis-
matching between sound classes and their DOA estimates, therefore
their scores were lower than those of the 2019 metrics. Using the
official 2020 evaluation metrics, the SED error rates and the DOA
errors of the SMN-base reduced almost by half compared to those of
the baseline. On the test set, the F1 score of the SMN-base is 69.4%
compared to 37.4% of the baseline, and the DOA frame recall of the
SMN-based is 82.7% compared to 60.7% of the baseline.

The SED-en model slightly improved the SED error rate and F1
score compared to those of SED-base model. Likewise, the SMN-
en models improved the SELD performance across all the metrics
compared to the individual SMN-base model. All the SMN-en en-
sembles had similar performance. We observed that all the models
performed much better on the validation set compared to the test
set. A close examination showed that the SED performance for the
male-shouting class on the test set is particularly poor.

4. CONCLUSION

We submitted 4 ensembles for the DCASE 2020 SELD challenge.
We combined several SMNs into these ensembles. We found that
the SMN approach significantly outperformed the SELDnet base-
line. In the SMN approach, we solved SED and DOAE separately
to optimize the performance of each tasks. After that, a CRNN-
based SMN was used to match the onsets, offsets, sound classes
and DOAs.
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