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ABSTRACT 

For the DCASE 2020 Challenge, the focus of Task 1B is to 
develop low-complexity models for classification of 3 different 
types of acoustic scenes, which have potential applications in 
resource-scarce edge devices deployed in a large-scale acoustic 
network. For this report, we present the training methodology 
for our submissions for the challenge, with the best-performing 
system consisting of an ensemble of VGGNet- and Inception-
Net-based lightweight classification models. The subsystems in 
the ensemble classifier were trained with log-mel spectrograms 
of the raw audio data, and were subsequently pruned by setting 
low-magnitude weights periodically to zero with a polynomial 
decay schedule for an 80% reduction in individual subsystem 
size. The resultant ensemble classifier outperformed the baseline 
model on the validation set over 5 runs and had 119758 non-
zero parameters which took up 468KB of memory, thus showing 
the efficacy of the pruning technique. No external data was used, 
and source code for the submission can be found at 
https://github.com/kenowr/DCASE-2020-Task-1B. 

Index Terms — Acoustic scene classification, weight 
pruning, ensemble classifier, VGGNet, InceptionNet 

1. INTRODUCTION 

Acoustic scene classification has been one of the mainstays of the 
DCASE Challenge, and aims to identify the environment in 
which an acoustic recording was made given the raw audio data 
itself. Prior to the DCASE 2020 Challenge, the focus of this task 
has been on the development of models with high classification 
accuracy. However, there is a well-known tradeoff between 
classification accuracy and model complexity, in that increasing-
ly complex models are required to obtain higher classification 
accuracies. Hence, the focus of Task 1B has shifted to account 
for this, by requiring models to achieve as high a classification 
accuracy as possible within a model size of 500 kilobytes (KB). 

The main approaches to acoustic scene classification in the 
literature can be broken down into three main types: Data-driven 
approaches looking to modify or augment the given dataset, 
representation-driven approaches looking to transform the given 

raw audio data to a different and possibly more salient form, and 
model-driven approaches looking to find building blocks and 
architectures that best replicates the desired output given a par-
ticular input. We provide a brief overview of the main techniques 
we observed as follows. 

For data-driven approaches, other than the usage of external 
data, mixup augmentation [1], [2] has been popular as a compu-
tationally cheap way to augment a dataset. In a similar fashion, 
Takahashi et al. proposed a method called Equalized Mixture 
Data Augmentation which creates new training samples from 
linear combinations of parametrically equalized versions of the 
original samples [3]. Furthermore, Chen et al. used a convolu-
tional variational autoencoder (CVAE)/generative adversarial 
network (GAN) system in the DCASE 2019 Challenge, which 
makes use of a separate neural network that generates new train-
ing samples, but is more computationally heavy [4]. 

For representation-driven approaches, log-mel spectrograms 
and mel-frequency cepstral coefficients of the raw audio data 
have commonly been used as input features to acoustic scene 
classification models. Alternatives to these features include mel-
frequency discrete wavelet coefficients and constant-Q cepstral 
coefficients [5], a combination of chroma, spectral contrast, and 
tonnetz features [6], and separation into harmonic and percussive 
components [1]. In addition, several teams have made use of the 
binaural nature of the recordings to devise useful representations, 
such as through primary ambient extraction to generate 4-channel 
spectrograms [2], as well as generalized cross-correlation-phase-
transform (GCC-PHAT) and interaural time difference (ITD) 
features [7]. 

For model-driven approaches, 2-dimensional (2D) convolu-
tional neural network (CNN) classifiers with fully connected 
layers have often been utilized in conjunction with spectrogram 
representations as input, given that spectrograms can be identi-
fied as images and that 2D CNNs have enjoyed much success in 
image processing tasks. Models exploiting the time-domain 
nature of the raw signals have also been used, such as 1D CNN-
based classifiers [8], [9] and AclNet [10]. Moreover, some au-
thors have also modified existing network architectures to better 
fit the acoustic domain. For example, McDonnell et al. used 
residual networks with parallel but separate pathways for high 
and low frequency components [11], Su et al. modified an Xcep-
tion network to allow for prediction with multi-scale features 
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from outputs at different depths [6], and Wan et al. modified 
ResNet and DenseNet to incorporate receptive-field regulariza-
tion and frequency-awareness [12]. Other approaches include the 
application Dempster-Shafer evidence theory to aggregate sub-
system outputs into an ensemble classifier [13], as well as the 
usage of a domain adaptation network to cope with potential 
device mismatch problems [14]. Lastly, a method that also re-
duces model complexity is knowledge distillation, where a larger 
teacher model is used to train a smaller student model to mimic 
the teacher’s outputs [15].  

However, the efficacy of the methods mentioned so far have 
yet to be explored for low-complexity applications. One way to 
adapt these methods for low-complexity application is to pre-
serve the architecture but omit redundant or low-magnitude 
parameters in a method known as model pruning. The idea was 
initially proposed for neural networks by Lecun et al. [21], and 
could potentially help to ameliorate overfitting problems with 
complex models by reducing the parameter count as well. Recent 
approaches to reduce model complexity also combine this with 
other techniques, albeit in the field of image processing and not 
audio processing. For instance, Han et al. applied a combination 
of pruning, quantization and Huffman coding on existing net-
works for the MNIST and ImageNet datasets [22], and Hooker et 
al. investigated the effect of pruning on the class-wise accuracy 
of various image classes on ImageNet models [23]. 

For our submission, we shall focus on the effect of pruning 
on model accuracy and complexity for acoustic models, and 
hence make use of relatively straightforward architectures and 
data preprocessing methods to observe it. 

2. DATA PREPROCESSING 

For our submission, we used the TAU Urban Acoustic Scenes 
2020 3Class dataset [16], [17], which consists of 10-second long 
recordings captured with an electret binaural microphone 
(Soundman OKM II Klassik/Studio A3) and audio recorder 
(Zoom F8) at a sampling frequency of 48kHz and a depth of 24 
bits [18]. The dataset features a 70-30 split between the training 
set and validation set, which we respectively used to train and 
evaluate our models. All recordings are classified into 10 fine-
grained classes, which are in turn classified into the 3 coarse-
grained classes “indoor”, “outdoor”, and “transportation” for 
Task 1B. 

2.1. Feature Extraction 

We used log-mel spectrograms as the features to train all the 
models in our submission. The binaural recordings were first 
converted to mono recordings by taking the point-wise mean of 
sample values across channels, and the log-mel spectrograms 
were subsequently generated from the short-time Fourier trans-
form of the mono recordings using a Hann window of length 
2048 with 50% overlap between windows and 48 mel bands 
with a minimum and maximum frequency of 0Hz and 24kHz 
respectively. Hence, each spectrogram could be represented by a 
48-by-467-by-1 tensor. 

2.2. Data Augmentation 

We used a simplified version of random block mixing to aug-
ment the TAU Urban Acoustic Scenes 2020 3Class dataset. Each 
augmented track consists of ten 1-second long segments from 
different recordings in the original dataset that have been con-
catenated in sequence. The 1-second long segments for each 
augmented track were chosen at random points of random re-
cordings belonging to the same class, but from as many different 
cities as possible to maximize variation in the augmented data. 
Hence, each augmented track has the same label as the original 
segments that comprise it. An example of an augmented track 
can be seen in Figure 1. 
 
(a) 

  
(b) 

 

Figure 1: Example of an augmented track with label “trans-
portation” as a (a) time-domain signal and (b) log-mel spec-
trogram. 

3. NETWORK ARCHITECTURE 

The networks that we used for our submission to Task 1B are 
shallower versions of VGGNet [19] and InceptionNet [20]. The 
choice of shallower networks was made to reduce the number of 
parameters in the overall model in line with the motivation for 
Task 1B. The networks use of stacks of smaller VGG(k) and 
Inception(k) modules, where k denotes the number of filters 
used for the convolutional layers in the modules. The structure 
of these modules is shown in Figure 2. 
 
 
(a)

 

 (b)

 

Figure 2: Architecture of (a) VGG(k) module and (b) Incep-
tion(k) module. 
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3.1. VGGNet-based Architecture 

The first network that we used was inspired from VGGNet and 
used VGG(k) modules with increasing numbers of filters in later 
layers. It contained 80839 parameters in 32-bit floating-point 
representation, taking up a total of 315.8KB of memory. The 
architecture is shown in Figure 3. 
 

 

Figure 3: Architecture of VGGNet-based network 

3.2. InceptionNet-based Architecture 

The second network that we used was inspired from InceptionNet 
and used Inception(k) modules with increasing numbers of filters 
in later layers. As advised by the authors in [20] for improved 
prediction accuracy, we did not perform batch normalization for 
the Inception(k) modules, and used Inception(k) modules only at 
the latter layers of the network with regular convolutional layers 
at the beginning. The overall network contained 167571 parame-
ters in 32-bit floating-point representation, taking up a total of 
654.6KB of memory, and its full architecture is shown in Figure 
4. 
 

 

Figure 4: Architecture of InceptionNet-based network. 

3.3. Ensemble Classifier 

In addition to the two basic networks described in Sections 3.1 
and 3.2, we also combined five VGGNet-based models (Figure 3) 

and one InceptionNet-based model (Figure 4), trained inde-
pendently with different randomly-initialized weights on the 
same dataset, as subsystems for an ensemble classifier. The mean 
of the class probabilities from each subsystem was taken to be the 
output of the final ensemble classifier. 

3.4. Submitted Models 

The four models that we submitted are made up of different 
combinations of the network architectures described in this 
section, and are specifically described as follows. 

 Model 1: Single VGGNet-based model trained on 
non-augmented data. 

 Model 2: Single InceptionNet-based model trained on 
non-augmented data. 

 Model 3: Ensemble classifier (five VGGNet-based 
models and one InceptionNet-based model) trained on 
non-augmented data. 

 Model 4: Ensemble classifier (five VGGNet-based 
models and one InceptionNet-based model) trained on 
augmented data. 

4. TRAINING METHODOLOGY 

Each model (or subsystem) in our submission was trained over 
400 epochs with a batch size of 128 samples, with an L2 kernel 
regularizer (regularization factor 0.001) applied on all 2D convo-
lutional and dense layers. We used the Adam optimizer with a 
learning rate of 0.0001 to train every model (or subsystem) by 
minimizing the regularized categorical cross-entropy loss be-
tween the predictions and ground-truth labels. 

In addition, we adopted a pruning schedule during the train-
ing phase similar to that proposed by Zhu and Gupta in [24]. The 
pruning schedule follows a polynomial decay equation as shown 
in (1). If we denote by si the initial sparsity (proportion of model 
parameters set permanently to zero at the start of the pruning 
schedule), sf the final sparsity (proportion of model parameters 
set permanently to zero at the end of the pruning schedule), n the 
number of times pruning occurs, t0 the first epoch when pruning 
occurs, and Δt number of epochs between each time pruning 
occurs, then we have 
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for all k in {t, t+1, …, t+Δt} and t in {t0, t0+Δt, …, t0+nΔt}. For 
our submissions, we used si = 0.1, sf = 0.8, n = 20, t0 = 100, and 
Δt = 10. In summary, this gives us a training schedule as outlined 
in Figure 5. 

5. RESULTS AND DISCUSSION 

We used the trained models to make predictions on the validation 
set, and compared them with the provided ground-truth labels to 
determine their micro-averaged and macro-averaged accuracies. 
Table 1 shows a summary of the performance of the four models 
described in Section 3.4, and Figure 6 shows the normalized 
confusion matrices obtained for the best runs of each model. 



Detection and Classification of Acoustic Scenes and Events 2020  Challenge   

 

Figure 5: Training and pruning schedule for all networks in 
the submission. The initial and final sparsity for all models 
was 0.1 and 0.8 respectively. 

 
(a) (b)  

(c) (d)

 

Figure 6: Confusion matrices of the best of 5 runs for (a) 
Model 1, (b) Model 2, (c) Model 3, and (d) Model 4. 

 

Table 1: Summary of model performance over 5 runs on 
validation set. Model size was calculated based on number of 
non-zero parameters. 

Model 
Mean micro- 

accuracy 
Mean macro- 

accuracy 
# non-zero 
parameters 

Model 
size/KB 

1 0.8841 0.8837 17115 66.9 
2 0.8785 0.8783 34181 133.5 
3 0.9047 0.9046 119758 467.8 
4 0.9050 0.9051 119758 467.8 

 
 

From Table 1, we can see that all models in our submission 
exceeded the mean baseline model macro-averaged accuracy of 
0.873, which shows that the combination of pruning, shallower 
models, and modified block mixing could improve classification 
accuracy for acoustic scene classification tasks as well. All mod-
els in our submission were within the size limit of 500KB as well. 

With the pruning schedule we described in Section 4, we 
can also see that both the pruned VGGNet- and InceptionNet-
based models (Models 1 and 2) had a five-fold reduction in 
number of non-zero parameters and model size as compared to 
the full models. In addition, the ensemble classifiers (Models 3 
and 4) performed markedly better than the single models (Models 
1 and 2), with a 2-3% increase in both micro-averaged and mac-
ro-averaged accuracy over the single models. However, compar-
ing the results from Model 3 and Model 4, it appears that our 

proposed data augmentation technique only achieves a marginal 
increase in mean accuracy (both macro and micro), since the only 
difference in Model 3 and Model 4 is the dataset used to train 
them. Lastly, we can see from the confusion matrices in Figure 6 
that the models tended to perform better in class-wise accuracy 
for the “transport” class than the “indoor” or “outdoor” classes. 
This may be due to similar frequency signatures between record-
ings from the “indoor” and “outdoor” class, since we used log-
mel spectrograms (which are inherently frequency-sensitive) as 
inputs to our model submissions. 

6. CONCLUSION 

In conclusion, our submission to DCASE 2020 Task 1B consists 
of VGGNet- and InceptionNet-based networks either used sin-
gularly or combined as an ensemble classifier. We used a modi-
fied block mixing technique for data augmentation and pruned 
the networks to achieve a five-fold reduction in non-zero param-
eter count while outperforming the baseline model in both mac-
ro-averaged and micro-averaged classification accuracy. Future 
work on this could involve comparing the change in perfor-
mance of the pruned networks against the full networks, as well 
as to develop metrics that encompass the accuracy-complexity 
dichotomy, possibly in order to find some Pareto-optimal region 
for accuracy against complexity. 
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