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ABSTRACT

This is a technical report about a sound event detection system for
the task 4 of DCASE2020. The purpose of a sound event detec-
tion is to find event class label as well as its time boundaries. To
achieve this purpose, we considered several methods such signal
enhancement and event boundary detection, and built five systems
by integrating these methods with supervised system trained by us-
ing Mean Teacher model. In particular, we estimate event bound-
aries of weakly labeled data by performing a event boundary de-
tection. Then, we used the estimated strong label in training the
supervised system. In addition, we adopt a fusion method by calcu-
lating weighted averaging posterior over the five outputs from each
individual system. In experiments with validation set, we found
that a final result of our system shows an improvement about 11 %
in class averaging f-score compared to a baseline performance.

Index Terms— Separation, enhancement, salience detection,
predictive coding, data augmentation, posterior fusion

1. INTRODUCTION

This report describes a Sound Event Detection (SED) system which
is submitted to the task 4 in the Detection and Classification of
Acoustic Scenes and Events (DCASE) 2020 challenge. From the
task description, 10-domestic sound events are considered as the
target events such Alarm/bell/ringing, Blender, Cat, Dishes, Dog,
Electric shaver/tooth brush, Frying, Running water, Speech, and
Vacuum cleaner. And, the system is designed to recognize not only
event class but also time boundaries given that multiple events can
be present in an audio recordings. To develop a SED system, we
can use three types of dataset such strong labeled including both
event class and its time boundaries, weakly labeled having event la-
bel only, and unlabeled dataset which has no information about the
events.

Our approach is composed of five subsystems designed by in-
tegrating sound enhancement, event boundary detection, and super-
vised system (Fig. 1). In the first part of our work, we trained a su-
pervised system based on Mean Teacher model [1] with three types
of dataset and estimated event labels by performing a salience de-
tection method on weakly labeled data. In terms of pre-processing,
we applied two methods for speech separation and background
noise suppression to audio recordings. After performing these pre-
processing, the supervised systems were applied for posterior cal-
culation. Note that estimate labels for all classes were used in train-
ing version I while the estimate for Dishes class was excluded in
training version II due to ( ). In system 03, a speech separation
method outputs two audio clips for speech and non-speech classes.
The posteriors for these audio clips are individually calculated in

Figure 1: Overall System Architecture

the following supervised system. Then, the output is constructed by
gathering a speech posterior in the output of speech audio and non-
speech posteriors in the output of non-speech audio. In parallel, the
salience detection used in event label estimation for weakly labeled
data and a predictive tracking are performed to find event interval
in an audio recording. Then, we assigned target event class on each
interval based on the output of supervised systems. The final result
of our approach is determined by performing soft and hard decision
with the outputs of the five systems in fusion.

2. METHODS

2.1. DESED enhancement

A distributed CNN with attentional mechanisms, first proposed for
music source separation [2], was trained in this instance to enhance
the DESED foreground. This system is denoted as Enhancement
in the system architecture in Fig. 1. A mixture audio consisting of
DESED and FUSS training set was created similar to the source
separation baseline. A distributed CNN system was trained using
this data to attend to either FUSS or DESED foreground. The sys-
tem consists of two map memories and two anchor memories [2],
representing the DESED foreground and FUSS auditory scenes re-
spectively. Given a mixture input, the output of the system when
attending to DESED foreground was used as the enhanced DESED
waveform on which supervised event detection was performed.

2.2. Separating speech and non-speech

The speech class is the most frequently encountered class in this
event detection task. Also, the presence of speech overlapping
presents challenges to the supervised system in detecting and clas-
sifying the overlapping events. Therefore, another distributed CNN
with attention [2] was trained using the synthetic data for the pur-
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pose of separating speech class from the non-speech classes of the
challenge. In this case, the two anchor memories and the two map
memories, represent the speech class and the non-speech classes.
Given a waveform, the system generates two outputs, one on at-
tending to the speech class only and the other other on attending to
the non-speech class alone. The supervised system then estimates
posteriors on each of this waveforms. Only the speech posteriors
are retained from the speech waveform while the posteriors for the
remaining nine classes are retained from the non-speech waveform
(indicated as gathering in the system architecture).

2.3. Salient Event Detection

Salience is an acoustic driven attribute of audio objects that makes
them stand out from the other objects in the scene. In this work,
salience is used to detect object boundaries with the assumption
that salient onsets correspond to event onsets in the scene. Salience
detection is unsupervised and consists of a feature extraction stage
and a boundary detection stage. These stages are described below.

Feature extraction: A variational auto-encoder(VAE) [3]
trained to separate the input feature stream into different modula-
tion frequencies is used as a feature extractor. By separating the
features based on modulations, the VAE is expected to separate
objects in the embedding space. For this work, we used 3 non-
overlapping bands with band-pass frequencies [0, 2.4Hz], [2.4Hz,
6Hz] and [6Hz, 12Hz]. The embedding space is trained with gaus-
sian priors with unit variance and means restricted to the modula-
tion frequencies mentioned above. Embeddings corresponding to
the means of the posterior gaussians are used for the boundary de-
tection stage.

Boundary detection: For detecting the boundaries from the em-
beddings, we used a similar method to that used in [4]. Briefly,
a derivative following by smoothing in time and averaging across
units is used as measure of temporal salience of the input audio.
Peaks in the salience are considered event onsets and the corre-
sponding offsets are computed by thresholding the short-term en-
ergy. In contrast to the previous work, we chose the band that had
the best performance for the classes in a given scene which were
determined by the supervised system posteriors.

2.4. Predictive tracking

Linear predictive coding (LPC) [5] is used to detect event bound-
aries by tracking acoustic features. A set of fifteen temporal and
spectral acoustic features introduced in [6] is extracted from the
DESED dataset audio signals producing fifteen timeseries. An LPC
is applied on each timeseries for online predictive tracking. The co-
efficients of LPCs are optimized by minimizing the squared predic-
tion error using a normalized stochastic gradient descent approach.
A failure in accurate prediction (i.e. prediction error exceeding the
threshold) is considered to be a change in the acoustic events. The
threshold is fixed based on the best results from the DESED syn-
thetic dataset. The prediction error for each individual feature is
used as a score to detect onset of the events. The scores among fea-
tures are integrated using a weighted average where the weights are
learned by applying a logistic regression algorithm on the synthetic
dataset. A change in data (feature values) distribution indicates the
offset of events.

2.5. Post-processing for unsupervised methods

The post-processing for unsupervised methods is composed of
Merging and Assigning event class. In merging, joint intervals are
additionally extracted by applying AND rule in between outputs of
salience detection and predictive tracking. And, the joint interval is
going to the next block with the outputs of the unsupervised meth-
ods. Because these outputs have no information about event class,
class-wise posteriors obtained by supervised systems are used to
assign event classes to each detected interval. First, correlations be-
tween event-present probabilities within the interval and posteriors
for each class are calculated. After normalization by the duration,
event classes are assigned to the interval if a normalized correlation
is larger than 0.5. Note that an estimate interval could be have mul-
tiple class labels if the correlations in those classes are larger than
0.5.

2.6. Fusion

A final result is produced by integrating the outputs of each individ-
ual system. In the first stage, supervised and unsupervised methods
are separately integrated by calculateing weighted averaging poste-
rior of the outputs. For supervised methods, class-wise f-scores of
each system are defined as the weights and the weight is normalized
by summation in each class [7]. Thus, we denote this integration as
soft-decision in Fig 1. A supervised posterior is calculated by using
this soft weight. On the other hand, unsupervised posterior is ob-
tained by gathering posterior for a class from a system that shows
the best f-score in the class. This integration is denoted as hard-
decision in the figure. Similarly, extra hard decision is performed
again in between the supervised and unsupervised posteriors. Once
a final posterior is calculated, we applied a threshold (0.3) to poste-
rior for each class for detecting event intervals.

3. EXPERIMENTS

3.1. Database

To develop and evaluate our approach, we used the database for
sound event detection in DCASE2020. Basically, a supervised sys-
tem is trained with not only strong labeled data (synthetic data) but
also weakly labeled and unlabeled data (real data) which are sub-
sets of the DESED [8, 9]. In the enhancement system, the FUSS
[10, 11, 12] and DESED mixture was used to train the system,
whereas the synthetic data was used to train the system that sep-
arated speech and non-speech. For developing predictive tracking
system, synthetic training set is used to optimize threshold.

3.2. Experiment setting

Supervised system II differes from I in two aspects. Firstly, syn-
thetic data used for the strong label based loss is augmented by
weakly labeled data with a single class. The weakly labels were
converted to strong labels by computing the boundaries using
salience as described in section 2.3. Secondly, the exponential soft-
max attention is replaced with a linear softmax.

A distributed CNN with attention architecture same as the one
detailed in [2] was employed for the system enhancing DESED
foreground (section 2.1) and as well as for the system separating
speech and non-speech (section 2.2).

VAE used in the salience based event detection was trained us-
ing weakly labeled and unlabeled data of the real data. A 128 di-
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mensional biomimetic spectrogram extracted at 100Hz is used as
the input feature to the VAE. Encoder of the VAE is constructed us-
ing 3 pairs of 2D Convolution-Maxpooling layers with convolution
kernel sizes 16x16 and ReLu activation followed by a linear projec-
tion layer with output size 360. 180 of these embeddings are used
as means and remaining 180 are used as log-variance of the latent
posterior gaussian. The decoder uses the similar architecture with
Maxpooling operations replaced by upsampling. Stochastic gradi-
ent descent based training with reparametrization trick [3] was used
to train the VAE with a batch size of 1.

In evaluation of our approach, we performed cross-validation
test by random selection for 20% data in the DCASE valdiation set.
And, we summarized as the mean and standard deviation over the
20-times repetition.

3.3. Results

Using the DCASE validation set, our approach was tested and the
results are summarized on Table I for individual systems and Table
II for fusion. We found an improvement of class averaging f-score
in supervised methods compared to DCASE baseline. By compar-
ing the results between baseline and S01, we found the effectiveness
of using estimated labels for weakly labeled data in training. In S02,
separated audio clips for speech and nonspeech are tested in the su-
pervised system used in S01. In this result, we found an improve-
ment in Speech and Vacuum cleaner classes although the f-score in
Frying class is decreased. Similarly, enhanced audio recordings by
performing a background noise reduction can help to improve the f-
scores. In the result of S03, almost f-score are improved compared
to baseline except Cat and Dishes classes.

On the other hand, we found improvements in several classes by
performing unsupervised methods. In between unsupervised meth-
ods, the predictive tracking (S04) can significantly improve the f-
scores for Blender and Dog classes while a f-score for Frying is
dropped down. And, the salience detection (S05) can help to im-
prove f-scores in Electric shaver toothbrush and Vacuum cleaner.
In particular, a joint result (S04&S05) between two unsupervised

methods shows the best f-scores in Alarm bell ringing and Running
water classes among the unsupervised methods. Because a duration
in detected interval by each method can be reduced by applying the
AND rule in between two unsupervised methods. It can help to find
short time repeating event like alarm or discrete sound like speech
due to silent syllable.

As shown in Table I, each system has pros and cons depend-
ing on event class. To compensate drawbacks of each system, we
considered a fusion method among the individual systems and sum-
marize the results in Table II. In fusion among the supervised meth-
ods, we found further improvement in five classes such Alarm bell
ringing, Dishes, Running water, Speech, and Vacuum cleaner. And,
the best cases in each class are gathered by performing hard de-
cision among the unsupervised methods. As shown in Table II,
our supervised fusion system seems to help for finding long time
events while unsupervised fusion system can help to detect short
time events. With these results, the final result is derived in the sec-
ond hard-decision. In our approach, the class averaging f-score is
improved about 11% compared to baseline performance.

Due to the risk of using hard decision, we additionally per-
formed a cross-validation test. Table III shows mean and standard
deviation of f-score over the repetition. The result shows same trend
with the numbers in Table II, and three class averaging f-scores
in Table II is bounded within each 95% confidence interval calcu-
lated by mean and standard deviation in Table III (95% confidence
interval for; supervised fusion: 41.97±1.31, unsupervised fusion:
42.16±1.54, and final fusion: 45.75±1.37).

4. SUMMARY

In this report. we describe our approach for sound event detec-
tion which is submitted in task 4 of DCASE2020 challenge. For
this challenge, we built a fusion system composed of five individ-
ual subsystems. And, each subsystem was designed by integrating
several methods such speech separation, background noise removal,
salience detection, and predictive tracking. In particular, we applied
salience detection to weakly labeled data for getting information
about event class as well as its time boundaries. Then, we used the
estimated labels in training a supervised system. The effectiveness
of this method was demonstrated in experiments. For combining
five outputs from each subsystem, we calculated weighted averag-
ing posterior with soft and hard weight. The final result was derived
by applying threshold (0.5) to a posterior for each class. According
to the results, it is shown that the fusion method can help to improve
the performance.
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