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ABSTRACT

In this report, we present our approach for DCASE 2020 Challenge
Task3: Sound event localization and detection. We use a single step
training method using SELDNet like models but using fully convo-
lutional architectures. We consider the joint optimization of both
event detection and doa estimation. For the metrics that evaluate
the performance of the model consider interdependence of both pa-
rameters performance unlike independent performance like DCASE
2019 challenge. We use all the sound event classes and correspond-
ing cartesian co-ordinates for each class to create an image like label
for reference and make this an image to image mapping problem.
The best model could get DOA error of around 13.50 and error rate
of 0.55.

Index Terms— DCASE 2020, SELDNet, Fully convolutional
networks, sound event localization and detection, skip connections

1. INTRODUCTION

Sound event Localization and detection has been an interesting
topic for research for a long time. Previously it was a very chal-
lenging to achieve satisfactory performance mainly because of their
implementation was based on pure signal processing algorithms.
Recently with availability of comprehensive databases and compu-
tational resources several interesting performances have been ob-
served. Researchers have proposed several deep learning algorithms
that combined solve the localization and detection problem. How-
ever, most of the proposed approaches consider raw spectrograms
as an input feature to neural networks. Such kind of features may
be okay for application involving speech enhancement, dereverber-
ation and few other problems where the networks learn some kind
of patterns like formants, pitch etc.. Such features are however not
applicable to sound events detection most of the time for they do
not consider human speech as their only inputs.

A very recent implementation of SELD has been described
in [1] where a Convolutional Recurrent Neural Network (CRNN)
is trained using magnitude and phase spectrograms to predict ac-
tive sound events and their location w.r.t the microphone array. In
DCASE 2019 challenge [2], many research teams have proposed
models with state of the art performances with reduced feature
sizes. For example in [3] mel-scale spectrograms and phase trans-
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formed generalized cross correlation (GCC-PHAT) have been ex-
tracted from the spectrograms which contain the necessary and suf-
ficient information for the model to learn patterns to predict active
sound events class and their location.

Most of the previous approaches make use of ensemble models
[4] and average them [3] in the end to further reduce the training
error and avoid overfitting. This method has an advantage when
running the evaluation dataset on these trained models to achieve
reasonable performance. However, in our approach we do not train
such ensemble models for they require lot of hyperparameters tun-
ing.

2. FEATURE AND LABEL EXTRACTION

The TAU-NIGENS Spatial Sound Events 2020 dataset [5] consists
of two recordings format: first order ambisonic (foa) and 4 chan-
nels from a microphone array (mic). We use both microphone array
(MIC) and first order ambisonics (FOA) format in our experiments.
The development dataset consists of a total of 600 recordings each
one minute long sampled at 24000 Hz.

The labels represent the location of each sound source and their
corresponding class for every 0.1s. Therefore, for each recording
there are 600 labels. For hop length of 0.02 seconds and window
length 0.04 seconds, a complex spectrogram of size 3000x512 can
be derived. This means the labels represent ground truth for every
5 spectrogram frames. Processing the spectrogram this size can be
time consuming and redundant.

For this kind of application it has been shown the instead of
using raw spectrograms for training neural networks, we can extract
useful features like mel spectrograms [3]. For both FOA and MIC
dataset, the mel spectrograms are calculated. In addition to this
the GCC-PHAT are also calculated for the mel bands. We use the
64 mel frequency bands as suggested in the baseline thus reducing
the input feature mel-spectrogram to 3000x64 with a total of 17
channels (10 MIC and 7 FOA).

There are a total of 14 sound events with 2 or less sound events
active at any given time. Hence the sound event detection (SED) La-
bels can be structured as a vector of length 14 for 14 classes with any
particular sound event as active or not by a binary 0 or 1. Similarly,
we have another 14 reference labels for each x, y and z co-ordinates
where any particular active sound event is given its co-ordinates rest
being zero. We use the cartesian co-ordinate system over spherical
for all the reference labels lie between (-1,1). This way each cor-
responding label now has 56 labels of which first 14 are binary 0/1
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SED labels and next 42 are x, y and z DOA labels.
since the hop length (0.02 s) is 1/5th of the time for which labels

have been provided (0.1 s), we upsample the labels by copy the
labels 5 times to match the input feature size in time steps. For
example, for every 300 input frames, there would be (300/5=60)
reference labels. After upsampling, there are labels for each time
frame. As a result, for input feature size of (300 x 64) the labels
matrix size is (300 x 56). This can be considered as image to image
mapping problem since all the reference labels are within (-1,1)

3. ARCHITECTURE

The baseline architecture consists of a convolutional recurrent neu-
ral network with 3 convolutional layers followed by bidirectional
GRUs and Dense layers. The SED task is considered as classifica-
tion problem and the DOA is considered regression problem. In our
approach, we consider the entire problem as regression and train im-
age to image network using Fully convolutional layers with GRUs.

The architecture we use is a modified version of U-NET [6]
with skip connections replaced by convolutional and GRU layers as
seen in Fig. 1. Each path towards the output with/without skip con-
nections serves similar to SELDNet like CRNN model. The intu-
ition behind this architecture is to avoid the use of ensemble models
and stack all the models in the final stage. In total there are 4 paths
serving as 4 SELDNet like models. The main path consists of the
following sequence of layers. The squeezing path is given by:
encoder1 → encoder2 → encoder3 → encoder4 → GRU4 → de-
coder1 → decoder2 → decoder3 → decoder4 → output.

Throughout the training we use (3 x 3) convolutional filters with
padding on both sides unless specified. We specifically use padding
and max pooling (stride=(2 x 2)) to reduce feature maps instead of
stride to change the shape of the output image to that of the refer-
ence label. The layers in the main path and their hyper-parameters
with corresponding outputs are as described Table.1. Encoder1 and
2 blocks have not been zero padded along third dimension (fre-
quency) while performing convolutions. As such after the convo-
lution and max-pooling their size is reduced to (32 x 300 x 62) and
(32 x 150 x 31) respectively instead of (32 x 300 x 64) and (32 x
150 x 32) if done with zero padding along third dimension. Simi-
larly for Encoder2 the output is reduced to (64 x 75 x 14). Encoder3
and 4 follow usually with zero padding along both the dimensions.

The output of GRU4 is then upsampled by doing transposed
convolutions to get (128 x 37 x 7). This output is concatenated
with encoder3 output and again upsampled. However, the output of
decoder3 has (150 x 28) feature maps as opposed to (150 x 31) of
encoder 1. Hence in encoder1, we crop the first and last 2 features
across last dimension and perform upsampling to achieve (150 x 28)
features. The last layer does not need to any concatenation and is
directly upsampled to achieve the predicted labels. Unlike U-NET
that performs all symmetric reduction and upsampling of features,
this approach has asymmetric skipped operations.

There are in total three skipped connections in this architec-
ture. Each connection consists of repeated convolutions followed
by Bidirectional GRUs. The (conv x 5), (conv x 4) and (conv x 3)
represents performing 5, 4 and 3 repeated convolutions. The layers
details can be found in Table.2. The convolutions are performed
with same input and output features such that their dimensions re-
main same in order to concatenate with upsampled features.

Stage Output Layers
input 17x300x64 input features

encoder1 32x150x31 conv,BN,pReLu,maxpool,pad(1,0)
encoder2 64x75x14 conv,BN,pReLu,maxpool,pad(1,0)
encoder3 128x37x7 conv,BN,pReLu,maxpool,pad(1,1)
encoder4 256x18x3 conv,BN,ReLu,maxpool,pad(1,1)
GRU 4 256x18x3 Bidirectional 2 layer,768 GRU units

decoder1 128x37x7 convTranspose,BN, ReLu
decoder2 64x75x14 convTranspose,BN, ReLu
decoder3 32x150x28 convTranspose,BN, ReLu
decoder4 1x300x56 convTranspose,BN, TanH

Table 1: Encoder Decoder Architecture

Stage Output Layers

conv x 5 32x150x31 5 repeated convolutions
conv,BN,ReLu

GRU 1 32x150x31 Bidirectional 2 layer,992 GRU units

conv x 4 64x75x14 4 repeated convolutions
conv,BN,ReLu

GRU 2 64x75x14 Bidirectional 2 layer,896 GRU units

conv x 3 128x37x7 3 repeated convolutions
conv,BN,ReLu

GRU 3 128x37x7 Bidirectional 2 layer,896 GRU units

Table 2: Skip connection/concatenation layers

4. RESULTS

The trained models are used to predict the outcomes of the valida-
tion and test dataset. All GRU layers are set with dropout of 0.2.
The approach used in this study is very specific to the input feature
dimensions. For other previous approaches like SELDNet models
[1] and ensemble approaches, the model can accept variable inputs.
But in our case, since we are performing asymmetric skip connec-
tions in the so called fully convolutional architecture and with im-
age to image learning and the size of input and output image being
different. The entire model needs to be changed in order to be com-
patible with different input feature shape.

We consider input feature to have 300 frames or 300 time steps
with 64 mel bands. The image is then passed through the network to
output a (300 x 56) image with predicted SED+DOA (14+42) val-
ues. From this output, the SED corresponding values are rounded to
their nearest integer. Since the reference labels have been provided
for every 5 frames we squeeze out one set of labels for every 5 time
steps to calculate the SELD metrics.

5. SUBMISSIONS

Of the four submissions first two are FCn based and the other two
are CRNN architecture based similar to SELDNet. Although the
performance of FCn based model has better performance but it is
only slight improvement in terms of DOA error as compared to sub-
mission 3 and 4. The layers for latter model are given in Table.4.
The SED labels are considered as classification problem with and
DOA are considered as regression while calculating losses. Unlike
the FCn model where entire model output considered as regression
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Figure 1: Fully convolutional architecture with skip conv-GRU layers for SELD

Submission ER200 F200 LECD LRCD SELD
1 0.55 54.2 13.60 63.6 0.35
2 0.56 53.7 140 62.6 0.37
3 0.55 55.4 14.90 66.5 0.35
4 0.54 55.6 15.20 67.2 0.35

baseline 0.72 37.4 22.80 60.7 0.49

Table 3: Results on development dataset

problem. For all submissions the learning rate was fixed throughout
training and was optimized using Adam optimizer. For submissions
(1,3) and (2,4), the learning rate was 0.0001 and 0.00005 respec-
tively.

6. CONCLUSION

We conclude that the performance of our approach outperform base-
line methods. But there definitely is further room for improvement.
More complex and deeper architectures need to be experimented
with like ResNET, Inception models among others. Also ensemble
methods might lead to further reduction in training losses and better
generalization for evaluation dataset.
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